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Abstract

Global eigenmodes of low frequency waves in FRC plasmas have been obtained using
MHD model and one-dimensional equilibrium model. Dispersion relation and radial structure
of the global wave fields are shown for the azimuthal mode number m=0. Theresults are
compared with the results of alow frequency wave heating experiment. A possibility of ion
heating by the transit-time magnetic damping is discussed.

1. Introduction

Low frequency waves have been used for plasma heating. Recently a heating experiment
has been performed in Osaka University [1]. In this experiment, low frequency (compared
with the ion cyclotron frequency in the external magnetic field) oscillating magnetic field was
applied to the FRC plasma. The applied field was homogeneous in the azimuthal direction. As
aresult, afluctuation of the magnetic field was observed to propagate in the direction parallel
to the equilibrium magnetic field of the FRC plasma. In addition, an increase in the plasma
energy was observed. Comparison between the total temperature and the ion temperature
suggests that the increase in the plasma energy was mostly due to theincrease in theion
temperature. Thisimplies that the applied oscillating magnetic field could excite low
frequency waves and the wave energy was absorbed by theions. Surprisingly, toroidal field
(not fluctuating) was generated by the applied magnetic field [2]. However the mechanism for
these phenomena have been unclear. In this study, global elgenmodes of low frequency waves
in one-dimensional FRC plasmas are analyzed for the azimuthal mode number m=0 using
MHD model. The results are compared with the experiments. Finally, a possibility of ion
heating and the toroidal field generation by the transit-time magnetic damping is discussed.

2. Global eigenmode analysis

To investigate the low frequency waves propagating through FRC plasmas, the set of
single-fluid MHD equations (with Hall term) is used:
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Linearizing these equations and assuming that the FRC plasma has no equilibrium flow, we
have 6 independent equations for 6 perturbed quantities v, and E,. Since we seek waves
propagating in the & and z-directions with a global radial extension between the geometric
axis and the conducting wall, the perturbed quantities are assumed to have the following form
in the cylindrical coordinate system:

f,(r,0,z,t) = f,(r)exp[i(mé + kz— o1)]

where m, k,and o aretheazimutha mode number, wave number in the z-direction, and
the frequency. This leads to an eigenval ue problem where the wave number k isthe
eigenvalue and the radial profile of the wave fields iV, (r),V,, (r),V,(r), E, (r),iE,, (r).iE, (r)
are the eigenfunctions for agiven real frequency » and aboundary conditionsat r =0
(geometric axis) and r =r, (perfectly conducting wall). Since only propagating waves are
considered inthisstudy, k and @ arereal. The problem is solved in the following way.
Each eigenfunction is approximated in terms of afinite series of basis functions ¢,(r) and a
function which satisfies the boundary conditions. For example, iV, isexpressed as

7, (1) = Fu (N C%,(1)

n=1
¢,(r) =cod(n-1)zr/r,]
where F, (r) isthe function satisfying the boundary condition for iV, (r),and C" arethe
expansion coefficients. In deriving the equations for the expansion coefficients, we used the
Galerkin method. Only modes with the azimuthal mode number m=0 are considered in this
study.

3. One-dimensional FRC equilibria



In the perturbed equation of motion, d?p,(r)/dr? appears, where p,(r) isthe
equilibrium plasma pressure. For the pressure profile asin Ref. [3], d®p,(r)/dr? is
discontinuous at the separatrix. Since continuity of d®p,(r)/dr? at the separatrix is needed
inthislinear analysis, one-dimensional FRC equilibria have been obtained by solving the
Grad-Shafranov equation for the following pressure profile

~ alps(t// +ayy’ +a21//3)+ p,, w=>0
p(y) =
a1 Ps exp(alw), w <0

where p, isthepressure at the separatrix, «,,c, areparameters. Figure 1 shows 3 different
equilibriawith peaked (h=1.2), flat (h=1.0), and hollow (h=0.8) current profile. Here h
isthe current profile index [4]. In all these equilibria, the magnetic null and the separatrix are
=0.32r, and r=r,=0.45r,.
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Fig. 1. Radial profile of the pressure, current density, and the magnetic field in the one dimensional FRC
equilibria with (a) peaked current profile (h=1.2); (b) flat current profile (h=1.0); (c) hollow current
profile(h=0.8). r,,(=0.32r,) and r,(=0.45r,) show theradii of the magnetic null and the separatrix.

4. Results

The eigenvalue problem was solved for the azimuthal mode number m=0 inthe FRC
equilibriashown in Fig. 1. Figure 2a shows the dispersion relation of the low frequency waves
propagating in z-direction in the peaked current equilibrium. The frequency is normalized to
w4, = €B,,/m , which istheion cyclotron frequency in the external magnetic field. The
normalized wave numbers (eigenvalues) r k areplotted for o/wy,=0.015-0.3in
increments of 0.015. The broken line shows the Alfvén velocity v,, =B, /(o )"? » Where
Pl s the mass density at the magnetic null. The solid line shows o/wy, =0.26, which
corresponds to 80 [kHZ] (the frequency of the applied field in the experiment) for
B, =0.04[T] and deuterium plasma. Figures 2b and 2c show the dispersion relations in the flat
and hollow current equilibria. We see from Fig. 2a-c that in all these equilibria the eigenmodes
aredensefor w/k>v,, and sparsefor w/k<v,,.
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Fig. 2. Dispersion relation of the low frequency waves in the equilibria with (a) peaked current profile; (b)
flat current profile; (c) hollow current profile. The broken line shows the Alfvén velocity

Vao = B/ (o )2 Where p,, and B, arethe massdensity at magnetic null (r =r,, ) and the
magnetic field at thewall (r =r,,). @4, =€B,/m istheion cyclotron frequency at the wall. The solid line
shows /@y, =0.26, which corresponds to 80 [kHZ] (the frequency of the applied field in the experiment)
for B,=0.04[T] and deuterium plasma.

Figure 3 shows the radial structure of the perturbed electric field, mass flux density, and
magnetic field (the eigenfunctions) of the eigenmodes with three different wave numbers
(eigenvalues) r,k on w/m,,=0.26. For the phase velocity w/k much larger than v,,
(see Fig. 3a), the amplitudes of the wave fields appear mainly outside the separatrix. The
electric field has only r-component. For the mass flux density and magnetic field,
¢-component islargestin r >r, and comparable to z-component in r <r,. Asthe phase
velocity decreases, the amplitudes move to the inner region (see Fig. 3b), and finally a mode,
which has significant B, amplitudein r,, <r <r,, appearsfor w/k=v,, (seeFig. 3c). For
phase velocity w/k <v,, mode shown in Fig. 4a appears. In that mode the amplitude of
mass flux density appear between inside and outside the magnetic null. For more smaller

phase velocities, modes shown in Figs. 4b,c appear. In those modes, as the phase vel ocity
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Fig. 3. Radial structure of the perturbed electric field, mass flux density, and magnetic field (the
eigenfunctions) of the eigenmodes in the peaked current equilibriumwith (a) r,k=0.11, @/k=20v,,; (b)
r,k=038, w/k=54v,,; (c) r,k=20, o/k=1.0v,,.



increases the number of nodes in the mass flux density increases, while the electric field keeps
the same structure.

In the flat and hollow current equilibria, we see the same trend in radia structure of the
wave field as the phase vel ocity increases.
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Fig. 4. Radial structure of the perturbed electric field, mass flux density, and magnetic field (the
eigenfunctions) of the eigenmodes in the peaked current equilibriumwith (a) r,k=4.0, @/k=0.51lv,,; (b)
r.k=6.8, o/k=0.30v,,; (c) r,k=92, o/k=0.22v,,.

5. Discussion

In the experiment [1], the magnetic fluctuation measurement was performed only around
the separatrix. The fluctuation in the azimuthal direction, B,,, was larger than the other
components. The phase velocity of the observed wave increases with the radius. The
numerical results show that the amplitude of perturbed magnetic field is largest in ¢-direction
for phase velocities w/k > v,,. In addition, the mode, which propagates near the magnetic
null, has smaller phase velocity than that propagates away from the magnetic null (the mode
in Fig. 3b has smaller phase velocity than the modesin Fig. 3a). These trends in the numerical
results are consistent with the experimental results.

For atypical FRC plasma T. ~ 2T, and S ~1. Thusthethermal velocity of theionis
Vi ~ on ~0.82v,, . Figure 5 shows the modes with phase velocity similar to theion’s
thermal velocity in the peaked, flat, and hollow current equilibria. All of these waves have
significant B,, between the magnetic null and the separatrix, where the plasma pressureis
high. In addition, all those modes have the wave number similar to that of the applied
magnetic field in the experiment (r k =2.1 for the applied field). Thus this type of mode can
accelerate the plasmaions in z-direction by one of the collisionless wave-particle interactions,
the transit-time magnetic damping [5,6]. This leads to a possibility that the ions are



accelerated in z-direction by the wave through the transit-time magnetic damping, and the
accelerated ions produce the current in z-direction and the toroidal magnetic field as observed
in the experiment [2], then the ions are heated by making ion-ion collisions.
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Fig. 5. Radial structure of the perturbed electric field, mass flux density, and magnetic field (the
eigenfunctions) of the eigenmodes (a) in the peaked current equilibriumwith r,k=2.0, w/k=1.0v,,; (b)
in the flat current equilibriumwith r,k=2.2, @/k=0.96v,, ; (c) in the hollow current equilibrium with
r.k=25, w/k=0.84v,,.
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