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Abstract 

 
Global eigenmodes of low frequency waves in FRC plasmas have been obtained using 

MHD model and one-dimensional equilibrium model. Dispersion relation and radial structure 
of the global wave fields are shown for the azimuthal mode number 0=m . The results are 
compared with the results of a low frequency wave heating experiment. A possibility of ion 
heating by the transit-time magnetic damping is discussed. 
 

1. Introduction 
 

Low frequency waves have been used for plasma heating. Recently a heating experiment 
has been performed in Osaka University [1]. In this experiment, low frequency (compared 
with the ion cyclotron frequency in the external magnetic field) oscillating magnetic field was 
applied to the FRC plasma. The applied field was homogeneous in the azimuthal direction. As 
a result, a fluctuation of the magnetic field was observed to propagate in the direction parallel 
to the equilibrium magnetic field of the FRC plasma. In addition, an increase in the plasma 
energy was observed. Comparison between the total temperature and the ion temperature 
suggests that the increase in the plasma energy was mostly due to the increase in the ion 
temperature. This implies that the applied oscillating magnetic field could excite low 
frequency waves and the wave energy was absorbed by the ions. Surprisingly, toroidal field 
(not fluctuating) was generated by the applied magnetic field [2]. However the mechanism for 
these phenomena have been unclear. In this study, global eigenmodes of low frequency waves 
in one-dimensional FRC plasmas are analyzed for the azimuthal mode number 0=m  using 
MHD model. The results are compared with the experiments. Finally, a possibility of ion 
heating and the toroidal field generation by the transit-time magnetic damping is discussed. 
 

2. Global eigenmode analysis 
 

To investigate the low frequency waves propagating through FRC plasmas, the set of 
single-fluid MHD equations (with Hall term) is used: 
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Linearizing these equations and assuming that the FRC plasma has no equilibrium flow, we 
have 6 independent equations for 6 perturbed quantities 1v  and 1E . Since we seek waves 
propagating in the θ and z-directions with a global radial extension between the geometric 
axis and the conducting wall, the perturbed quantities are assumed to have the following form 
in the cylindrical coordinate system: 
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where m , k , and ω  are the azimuthal mode number, wave number in the z-direction, and 
the frequency. This leads to an eigenvalue problem where the wave number k  is the 
eigenvalue and the radial profile of the wave fields )(~),(~),(~),(~),(~),(~
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are the eigenfunctions for a given real frequency ω  and a boundary conditions at 0=r  
(geometric axis) and wrr =  (perfectly conducting wall). Since only propagating waves are 
considered in this study, k  and ω  are real. The problem is solved in the following way. 
Each eigenfunction is approximated in terms of a finite series of basis functions )(rnφ  and a 
function which satisfies the boundary conditions. For example, rvi 1

~  is expressed as 
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where )(rFvr  is the function satisfying the boundary condition for )(~
1 rvi r , and )(vr

nC  are the 
expansion coefficients. In deriving the equations for the expansion coefficients, we used the 
Galerkin method. Only modes with the azimuthal mode number 0=m  are considered in this 
study. 
 

3. One-dimensional FRC equilibria 
 



In the perturbed equation of motion, 2
0

2 )( drrpd  appears, where )(0 rp  is the 
equilibrium plasma pressure. For the pressure profile as in Ref. [3], 2

0
2 )( drrpd  is 

discontinuous at the separatrix. Since continuity of 2
0

2 )( drrpd  at the separatrix is needed 
in this linear analysis, one-dimensional FRC equilibria have been obtained by solving the 
Grad-Shafranov equation for the following pressure profile 
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where sp  is the pressure at the separatrix, 21,αα  are parameters. Figure 1 shows 3 different 
equilibria with peaked ( 2.1=h ), flat ( 0.1=h ), and hollow ( 8.0=h ) current profile. Here h  
is the current profile index [4]. In all these equilibria, the magnetic null and the separatrix are 
on wnull rrr 32.0==  and ws rrr 45.0== . 

 
4. Results 

 
The eigenvalue problem was solved for the azimuthal mode number 0=m  in the FRC 

equilibria shown in Fig. 1. Figure 2a shows the dispersion relation of the low frequency waves 
propagating in z-direction in the peaked current equilibrium. The frequency is normalized to 

iwci meB≡0ω , which is the ion cyclotron frequency in the external magnetic field. The 
normalized wave numbers (eigenvalues) krw  are plotted for 0ciωω = 0.015 – 0.3 in 
increments of 0.015. The broken line shows the Alfvén velocity 2/1

00 )( nullwA Bv ρµ≡ , where 
nullρ  is the mass density at the magnetic null. The solid line shows 26.00 =ciωω , which 

corresponds to 80 [kHz] (the frequency of the applied field in the experiment) for 

wB =0.04[T] and deuterium plasma. Figures 2b and 2c show the dispersion relations in the flat 
and hollow current equilibria. We see from Fig. 2a-c that in all these equilibria the eigenmodes 
are dense for 0Avk >ω  and sparse for 0Avk <ω . 

Fig. 1. Radial profile of the pressure, current density, and the magnetic field in the one dimensional FRC 
equilibria with (a) peaked current profile ( 2.1=h ); (b) flat current profile ( 0.1=h ); (c) hollow current 
profile ( 8.0=h ). )32.0( wnull rr =  and )45.0( ws rr =  show the radii of the magnetic null and the separatrix.



Figure 3 shows the radial structure of the perturbed electric field, mass flux density, and 
magnetic field (the eigenfunctions) of the eigenmodes with three different wave numbers 
(eigenvalues) krw  on 26.00 =ciωω . For the phase velocity kω  much larger than 0Av  
(see Fig. 3a), the amplitudes of the wave fields appear mainly outside the separatrix. The 
electric field has only r-component. For the mass flux density and magnetic field, 
θ-component is largest in srr >  and comparable to z-component in srr < . As the phase 
velocity decreases, the amplitudes move to the inner region (see Fig. 3b), and finally a mode, 
which has significant zB  amplitude in snull rrr ≤≤ , appears for 0Avk =ω  (see Fig. 3c). For 
phase velocity 0Avk <ω  mode shown in Fig. 4a appears. In that mode the amplitude of 
mass flux density appear between inside and outside the magnetic null. For more smaller 
phase velocities, modes shown in Figs. 4b,c appear. In those modes, as the phase velocity 

Fig. 2. Dispersion relation of the low frequency waves in the equilibria with (a) peaked current profile; (b) 
flat current profile; (c) hollow current profile. The broken line shows the Alfvén velocity 

2/1
00 )( nullwA Bv ρµ≡ , where nullρ  and wB  are the mass density at magnetic null ( nullrr = ) and the 

magnetic field at the wall ( wrr = ). iwci meB≡0ω  is the ion cyclotron frequency at the wall. The solid line 
shows 26.00 =ciωω , which corresponds to 80 [kHz] (the frequency of the applied field in the experiment) 
for wB =0.04[T] and deuterium plasma. 

Fig. 3. Radial structure of the perturbed electric field, mass flux density, and magnetic field (the 
eigenfunctions) of the eigenmodes in the peaked current equilibrium with (a) 11.0=krw , 020 Avk =ω ; (b) 

38.0=krw , 04.5 Avk =ω ; (c) 0.2=krw , 00.1 Avk =ω . 



increases the number of nodes in the mass flux density increases, while the electric field keeps 
the same structure. 

In the flat and hollow current equilibria, we see the same trend in radial structure of the 
wave field as the phase velocity increases. 

 
5. Discussion 

 
In the experiment [1], the magnetic fluctuation measurement was performed only around 

the separatrix. The fluctuation in the azimuthal direction, θ1B , was larger than the other 
components. The phase velocity of the observed wave increases with the radius. The 
numerical results show that the amplitude of perturbed magnetic field is largest in θ-direction 
for phase velocities 0Avk >ω . In addition, the mode, which propagates near the magnetic 
null, has smaller phase velocity than that propagates away from the magnetic null (the mode 
in Fig. 3b has smaller phase velocity than the modes in Fig. 3a). These trends in the numerical 
results are consistent with the experimental results. 

For a typical FRC plasma ei TT 2~  and 1~β . Thus the thermal velocity of the ion is 

00, 82.0~3/2~ AAith vvv . Figure 5 shows the modes with phase velocity similar to the ion’s 
thermal velocity in the peaked, flat, and hollow current equilibria. All of these waves have 
significant zB1  between the magnetic null and the separatrix, where the plasma pressure is 
high. In addition, all those modes have the wave number similar to that of the applied 
magnetic field in the experiment ( 1.2=krw  for the applied field). Thus this type of mode can 
accelerate the plasma ions in z-direction by one of the collisionless wave-particle interactions, 
the transit-time magnetic damping [5,6]. This leads to a possibility that the ions are 

Fig. 4. Radial structure of the perturbed electric field, mass flux density, and magnetic field (the 
eigenfunctions) of the eigenmodes in the peaked current equilibrium with (a) 0.4=krw , 051.0 Avk =ω ; (b)

8.6=krw , 030.0 Avk =ω ; (c) 2.9=krw , 022.0 Avk =ω . 



accelerated in z-direction by the wave through the transit-time magnetic damping, and the 
accelerated ions produce the current in z-direction and the toroidal magnetic field as observed 
in the experiment [2], then the ions are heated by making ion-ion collisions. 
 

 
 

References 
 
[1] K. Yamanaka et al., Phys. Plasmas 7, 2755 (2000). 
[2] K. Yamanaka Ph.D. thesis, Graduate School of Engineering, Osaka University, Japan, 
2000. 
[3] Y. Suzuki et al., Phys. Plasmas 7, 4062 (2000). 
[4] L. C. Steinhauer et al., Phys. Fluids B 4, 645 (2000). 
[5] T. H. Stix, The theory of plasma waves (McGraw-Hill). 
[6] Kenro Miyamoto, Plasma Physics for Nuclear Fusion (MIT Press). 

Fig. 5. Radial structure of the perturbed electric field, mass flux density, and magnetic field (the 
eigenfunctions) of the eigenmodes (a) in the peaked current equilibrium with 0.2=krw , 00.1 Avk =ω ; (b) 
in the flat current equilibrium with 2.2=krw , 096.0 Avk =ω ; (c) in the hollow current equilibrium with 

5.2=krw , 084.0 Avk =ω . 


