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1. Introduction 
Using the following incompressible two-fluid model, 
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Yamada et al.1 have studied the flowing equilibrium. Criteria are found for when the 
single-fluid model is adequate and when the more general two-fluid model is necessary. 
The ion flow and plasma beta as well as the size parameter are found to play a major 
role in the question of whether two-fluid corrections are needed. 

The stability of the local mode, which has the infinite azimuthal mode number and 
is localized on the magnetic flux surface, is studied in the field-reversed configuration 
(FRC) that is inevitably high beta2. It is found in this analysis that the compressibility is 
not important in spite of the sharp inhomogeneity of magnetic field strength and its 
curvature almost across the line from the magnetic axis to the x-points on the geometric 
axis. This tendency is also found in the tilt mode stability analysis in FRCs.3 From these 
two studies, the compressibility does not seem to play important role in high beta 
plasmas such as FRCs. Is it true? If so, why so? 

The purpose of this short comment is therefore to clarify t the prediction he 
two-fluid effect on the eigenmodes and to know the effect of the compressibility 
comparing derived by the incompressible model with that by the compressible model.  
 
2. Dispersion relation for incompressible two-fluid model 

Apply the above incompressible two-fluid model to the non-flowing, uniform 
equilibrium. Assume that any perturbed quantity f~ varies as )exp(~ tiif ω−⋅∝ rk , 
wherek is the wave vector andω the angular frequency of the mode considered. Then 
the equations for the perturbation are written as 
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Take the curl of eq.(8) and use eq.(13). Then, 
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Here it is used that the ambient magnetic field is in z-direction. Take the sum of eqs.(8) 
and (9), and use eq.(12). Then, we have 

0~1~~
0

=++ zei BBpp
µ

 and  Bu ~1~
0

zii Bknm
µ

ω −= ,     (16,17) 

where the relation, kBBBk zz BBBk ~~)~( −=×× , and eqs. (10, 14) are used. From 
eqs.(15) and (17), eq.(18) can be derived. 
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where pii c ω=l  is the ion skin depth. Note that the first term is derived from the 
single-fluid MHD and the second represents the two-fluid effect. Taking the cross 
product of eq.(18) with the wave vector and using the incompressible condition (10), we 
have the following eq.(19).  
 

( ) 0~~ 2222 =×−+ iAziziA VkkkVi uku ωω l                    (19) 
From eqs.(18) and (19), the dispersion relation (20) is derived. 
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Here ( )2AzVkQ ω= is the normalized frequency squared and 222

yx kkk +=⊥ . As this 

dispersion relation has two parameters such as 2)( izk l  and 2)( zkk⊥ , the eigenmode 
frequency is characterized by these two parameters. As the dispersion relation (20) is 
quadratic with respect to Q , two solutions may exist. Figure 1 shows the result. The 
deviation from the relation, 1=AzVkω which represents the so-called sheared Alfven 

wave, can be significant for fairy small 2)( izk l and 2)( zkk⊥ . This deviation 
represents the two-fluid effect. 
 
3. Dispersion relation for compressible two-fluid model 

To study the effect of the compressibility, let us replace eqs.(10) and (11) by the 
equations of continuity for each species. Then, we have 

ξk ⋅−=≡= innnn ei
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where ξu ωii −=~ . Here we assume for simplicity that the temperature of each species 
is constant. From sum of eqs.(8) and (9) and use of eq.(21), the equation (22) can be 
derived. 
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where ẑ  is the unit vector along the ambient magnetic field. Substituting eq.(22) into 
eq.(8), the perturbed electric field is written as 
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Substitution of eq.(23) into eq.(13) leads to 
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Substituting eq.(24) into eq.(22), we have the eigenvalue equation for the ion 
displacement ξ , 
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where the subscript ⊥ denotes the component perpendicular to the ambient magnetic 
field. The parallel (or z-) component of eq.(25) gives the relation, 
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Taking the inner and cross products of eq.(25) with the wave vector and using eq.(26), 
we have the following coupled equations 
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where ( ) 21
ieis mTTC += . From these equations the dispersion relation can be written 

as 
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Compared with the dispersion relation (20), this dispersion relation has the additional 
parameter )/()( 0

2 µβ BTTn ei += , which denotes the plasma beta. Note that the 
second curly bracket is the same as the left hand side of eq.(20). As the dispersion 
relation (29) is cubic with respect to Q , three solutions may exist. Note also that the 
dispersion relation (29) can be derived from the coupled equations for the electrostatic 
potential and the parallel component of the vector potential4 although its derivation is 
more complex.  

When 0)( 2 =⊥ zkk , i.e. the wave propagate along the ambient magnetic field, 



the second term of eq.(29) vanishes, resulting in the decoupling of the incompressible 
shear Alfven mode with two-fluid correction and the following acoustic wave 

szCk=ω                                      (30) 
Note that this mode can not described by the incompressible dispersion relation (20). 
 Tables 1 and 2 show the solutions of the dispersion relation (29) for various values of 

2)( izk l , 2)( zkk⊥  and β . As shown on the foot note, the frequencies with 

superscripts a) and b) are derived by the incompressible dispersion relation (20) and the 
frequencies with the superscript c) are derived by the vanishing condition of the first 
curly bracket of the compressible dispersion relation (29). At first look at the extremely 
high beta case such as β =100 in Table 1. Each of the three solutions of eq.(29) is in 
high accuracy equal to the corresponding frequency with the superscript a) or b) or c). 
This means that the second term of eq.(29) is not important for the extremely high beta 
case and as a result, the sheared Alfven wave predicted by the incompressible dispersion 
relation (20) works well. This tendency is also observed in Table 2. Actually, for high 
beta plasmas with 3≥β , this tendency can be observed. For low beta plasmas such as 

01.0≤β , however, the second term of eq.(29) is important and as a result, the 
incompressible dispersion relation (20) can not be applicable. 
 
4. Summary and Conclusion 

Applying the two-fluid model to an uniform plasma, we have studied the two-fluid 
effect and the compressibility. As shown in Fig.1, the frequency of the sheared Alfven 
mode, AzVk=ω , is significantly modified by the two-fluid effect for not so large 

values of 2)( izk l and 2)( zkk⊥ . Comparison between the incompressible and 

compressible models reveals that for high beta plasmas with 3≥β , the incompressible 
model is useful to study the sheared Alfven-like mode, but for low beta plasmas with 

01.0≤β , the incompressible model cannot be applicable. 

In FRCs, the average beta defined by )/( 0
2 µBpp +  can be large as 0.75-0.9. 

This means 3≥β . Hence, the above results are consistent with the results found in 
Refs.2 and 3 as described in Introduction. 
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Fig.1 AzVkω  versus 2)( izk l  for 2)( zkk⊥ =0.0 (dot-dashed line), 1.0 (solid line) 

and 10.0 (broken line) 



Table 1 

2)( izk l  2)( zkk⊥  
β  AzVkω  

0.2   1.0  0.01 0.0996 0.871  1.628   ( 0.141 c) ) 
0.2   1.0  0.10 0.305 0.891  1.647   ( 0.447 c) ) 
0.2   1.0  1.0 0.654 1.122  1.927   ( 1.414 c) ) 
0.2   1.0  3.0 0.709 1.282  2.693*  ( 2.449 c) ) 
0.2   1.0 10.0 0.726 1.342  4.590*  ( 4.472 c) ) 
0.2   1.0 100.0 0.732 1.363 14.18*   ( 14.14c) ) 

  0.2   1.0  0.733a) 1.365 b)  
a),b) These frequencies are derived by the incompressible dispersion relation (20). 
c) These frequencies are derived by the vanishing condition of the first curly bracket of 
the compressible dispersion relation (29). 
*) These frequencies are larger than ciω  because of ))(( Azizci Vkk ωωω l= .  
 
 
 
Table 2 

2)( izk l  2)( zkk⊥  
β  AzVkω  

0.0001   1.0  0.01 0.0316 1.000 1.415   ( 0.141 c) ) 
0.0001   1.0  0.10 0.308 1.000 1.451   ( 0.447 c) ) 
0.0001   1.0  1.0 0.765 1.000 1.848   ( 1.414 c) ) 
0.0001   1.0  3.0 0.915 1.000 2.676   ( 2.449 c) ) 
0.0001   1.0 10.0 0.973 1.002 4.588   ( 4.472 c) ) 
0.0001   1.0 100.0 0.992 1.006 14.18   (14.14c) ) 

  0.0001   1.0  0.993a) 1.007 b)  
a),b) These frequencies are derived by the incompressible dispersion relation (20). 
c) These frequencies are derived by the vanishing condition of the first curly bracket of 
the compressible dispersion relation (29). 
 


