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Transientandsecularbehaviors of interchangefluctuationsareanalyzedin an ambientshearflow by

invoking Kelvin’s methodof shearingmodes.Becauseof its non-Hermitianproperty, complex transient
phenomenacanoccurin a shearflow system.Thecombinedeffect of shearflow mixing andAlfv énwave
propagationovercomestheinstability driving forceat sufficiently largetime,anddampsall fluctuationsof
themagneticflux. On theotherhand,electrostaticperturbationscanbedestabilizedfor sufficiently strong
interchangedrive. Thetimeasymptoticbehavior in eachcaseis algebraic(non-exponential).

I. INTRODUCTION

It is widely acceptedthata shearflow yieldsstabilizingef-
fectsonvariousfluctuationsthroughconvectivedeformations
of disturbances[1, 2]. However, rigorous treatmentof the
shearflow effects encountersa fatal difficulty arising from
thenon-Hermitian(nonselfadjoint)propertiesof theproblem.
We maynot considerwell-defined“modes”andcorrespond-
ing “time constants.” The standardnormal modeapproach
breaksdown, andthe theorymay fail to give correctpredic-
tionsof evolutionevenif perturbationfieldsremainin thelin-
earregime.Thediscrepanciesbetweenthetheoryandtheex-
perimentonthestability limit of neutralfluidsarereviewedin
Ref. [3]. Theaim of this work is to establisha solid founda-
tion for theanalysisof shearflow systems.WeapplyKelvin’s
methodof shearingmodes[4]. Thisscheme,previouslycalled
as‘nonmodal’approach,actuallyconsistsin thecombination
of two methodswhichhavebeenwidely usedin solvingwave
equations;themodalandthecharacteristicsmethods.

Much work has beendone on instability problemswith
shearflows by meansof the ‘modal’ approach.It is implic-
itly assumedin the applicationof the modalschemethat the
motion canbe decomposedinto a setof independentnormal
‘modes’ with certaintime constants.As is well-known, this
methodis effective in solving problemsinvolving Hermitian
operators,however, whenapplying it to non-Hermitiansys-
tems,we may overlook the secularand transientbehaviors.
On the otherhand,the characteristicsmethodhasbeenused
in thecontext of rapiddistortiontheoryfor analyzingthefluid
turbulence[5]. If we cantreatthe non-Hermitianpart of the
wholeoperatorasasingularperturbationto aHermitianoper-
ator [6], we maybeableto constructthetheoryin theframe-
work of theperturbationtheoryfor theoperator[7]. But un-
fortunatelythe convergenceof the perturbative seriesseems
to beveryambiguousin caseof theshearflowsdueto thesec-
ularity of their time evolutions. Thus,a thoroughmathemat-
ical treatmentof the non-Hermitianpropertiesof shearflow
systemshasnot beenaccomplishedso far. In this paper, we
haveanalyzedtheshearflow effectoninterchangeinstabilities
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andits non-Hermitianmathematicalbackground,deriving the
timeasymptoticbehavior by meansof Kelvin’smethod.

We will first revisit Kelvin’smethodfrom theviewpoint of
thecharacteristicsmethod(Sec.II). We will review thespec-
tral theory focusingon the generalmathematicalconceptof
eigenmodein orderto gainabetterunderstandingof Kelvin’s
method. In Sec.III, we will formulatethe equationsfor the
interchangeinstabilities. In Sec.IV, we will derive the ordi-
narydifferentialequation(ODE) in time for the evolution of
theamplitudeof the interchangeinstabilitiesby applyingthe
analysisof shearingmodes.In Sec.V, by drawing the anal-
ogywith Newton’sequationit will beshown thatthesolution
to theabovementionedODE for theflux functionexhibits an
asymptoticdampedbehavior without any thresholdof insta-
bility drive. We will summarizetheresultin Sec.VI.

II. NON-HERMITIAN PROPERTY OF SHEAR FLOW
SYSTEMS

Beforeformulatingtheinterchangeinstabilityequations,let
us describea rough sketch of the problemand explain the
mathematicaltool to analyzethe non-Hermitiandynamics.
The linearizeddynamicsof fluid systemsin the presenceof
shearedflow is governedby a generalequationof thefollow-
ing type; �������
	�������������

(1)

where
�

denotesa Hermitian differential operator (time-
independent)definedin a Hilbert space� ,

	
is thestationary

meanflow, and
�

( ��� ) denotesaperturbationfield.
It is the convective derivative,

	���
, that introducesthe

non-Hermitianpropertyintoproblem(1)andpreventsthepos-
sibility of representingthe dynamicsof the systemsin terms
of orthogonalandcompletesetof eigenfunctions.This is a
well known difficulty in the stability analysisof neutralflu-
ids, suchasCouetteor Poiseilleflows, wherethepredictions
obtainedby meansof the modal methodsdo not matchthe
experiments[3].

In thecaseof a spatiallyinhomogeneousstationaryflow
	

,
Eq.(1) becomesnon-Hermitianandastraightforwardspectral
resolutionis not effective. However, Kelvin’smethodpermits
to resolve, for someclassesof meanflows, the evolution of
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the system(1) into new typesof modesby meansof which
bothtransientandsecularasymptoticbehaviorsareeffectively
described.Let usnow explain the mathematicalfoundations
of this scheme.

As mentionedin Sec. I, Kelvin’s methodconsistsin the
combinedapplicationof two methodswhich have beenex-
tensively usedin theanalysisof waveequations.Preciselythe
“Lagrangian”partof Eq. (1),

������	���
, is solvedby means

of the characteristicsmethodandthe “Hermitian” part
�

by
meansof thestandardspectralresolution.

The characteristicsmethodis appliedto solve the charac-
teristic ODE associatedto the Lagrangianderivative moving
alongthecharacteristiccurveof theambientmotion,which is
givenby �� �"! ��	#�  %$'&�( �*)

(2)

By inverting the modes,which areexpressedin Lagrangian
coordinatesas + $-, �.) ( , they will be representedin Eulerian
coordinatesas /+ $0!213, �  4( � + $-, �.) $0!215 6(7( � (3)

where
) $'!218 6(

denotesthe inverseof
 9$'!21 ) (

. The existence
of theinversemapping

 9$0!7(9:; )
is guaranteedin thecaseof

incompressiblemeanflows. DuetoEq.(3),
/+ $0!213, �  #( satisfies

thecharacteristicequation��� /+ $0!213, �  6( �
	��< /+ $0!213, �  4( � &>= (4)

The essentialcondition for the applicability of Kelvin’s
methodconsistsin theconstraintfor the functions

/+ $0!215, �  6(
to form thecompletesetof eigenfunctionsof theoperator

�
.

If sucha setof eigenfunctionsexists,we candecomposethe
perturbationfield

�
by meansof���@?BA�DC $'!7( /+ $0!213, �  6(>��,#= (5)

We notice that due to Eq. (3) the eigenvaluesof
�

become
timedependent.Thenew eigenvalueproblemfor

�
reads� /+ $0!213, �  #( �FE C $0!7( /+ $'!215, �  6(2= (6)

PluggingEq. (5) into Eq. (1) andexploiting Eqs.(4) and
(6), we have?FG ���HA� C $0!7(�I /+ $0!213, �  #("�J, � ? A� C $'!7( E C $0!7( /+ $0!215, �  6("��,6=

(7)
Due to the orthogonalityof the modes

/+ $'!215, �  #( , the evolu-
tion of

A�KC
is governedby theequation��"! A� C $0!7( �FE C $0!7( A� C $0!7(L= (8)

If
/+ $0!215, �  #( donotsatisfybothconditionsgivenby character-

istic equation(4) andeigenequation(6), Eq. (7) will havead-
ditionaltermswhichrepresentthecomplicatedmodecoupling
andthustheapplicabilityof Kelvin’smethodis compromised.

Due to the time dependencepresentin the eigenvaluesEMC $'!7(
, the evolution of

A�DC $'!7(
will not exhibit a simpleexpo-

nentialdependenceasin the Hermitiancase,but morecom-
plicatedbehaviors,which arecharacteristicof non-Hermitian
systems.By analyzingthis ODE, the motion of eachmode
can be classified,and the time asymptoticbehavior can be
also shown. The following sectionswill be devoted to the
derivation of ODE (8) andthe discussionof the behavior of
its solutionfor interchangeinstabilitiesin plasmaswith shear
flow.

Finally, let usclosethissectionby presentingthefollowing
theorem.Theproof is shown in Ref. [8]

Theorem II.1 Let us considerin an unboundeddomainthe
systemof PDEs$ ���N��O $' 6( �� ( G P $0!7(.QRI �TS $'!7(UQ

(9)

where

1.
O $- 6(

is an V -dimensionalvectorfunction linear in the
componentsof

 � $'WDX � =<=Y= � WJZ�(
2.
P $'! �8�\[^]�� =<=Y= �5�\[<_ (

and
S $'! �8�\[^]^� =Y=<= �5��[�_ (

are linear
differentialmatrix ( `ba
` ) operators,dependingex-
plicitly on time, which act on a ` -dimensionalvector
function

Q
Thenthe solutionsof Eq. (9) obtainedby meansof Kelvin’s
methodaregeneral.

III. FORMULATION OF INTERCHANGE INSTABILITIES

In this section,we will derive the equationsfor stationary
flowing plasmas.Specificallywewill investigatetheeffectof
shearflows on interchangeinstabilitiesof plasmaunderthe
influenceof homogeneousmagneticfield.

In thepresenceof gravitationalforce,theidealMHD equa-
tionsreadas c � 	�"! ��d a�egf ih�� cHj � (10)� c�"! � c k�L	l� & �

(11)� e� ! f  a $ 	 a�e ( � & � (12)k�L	�� & �
(13)

where

c
, e , and

j
arethedensity, magneticfield, andgravi-

tationalconstantvector, and
�Jmn�"! �o� � �p	q�H

denotesthe
Lagrangianderivative. Herewe assumetheincompressibility
of thevelocityfield

	
, insteadof usingtheequationof state.

Theambientfields(denotedby thesubscript
&
) mustsatisfyc�r 	 r �^�	 r ��d r a�e r f ih r � csrLj = (14)

If we considera parallel stationaryshearflow of the form	 r � $-& �7t r3u $0WD( � &s(
, straight homogeneousmagneticfield



3e r � $'& �8v u �8vxw (
, andgravitational forceactingin thepos-

itive
W

direction,theconvective derivative givesno contribu-
tion to thestationarystateandEq.(14) is reducedtoih r � c�r2j =

(15)

Theperturbedmagneticandvelocity fieldsareassumedto
be two dimensionalin

W
- y plane,andthuswe canintroduce

thepoloidalflux functionandstreamfunction;e X8z �@�{ a�| w �	 X8z �@~} a�| w � (16)

wherethesubscript� denotestheperturbedquantities,� ex-
pressesthe directionperpendicularto the � axis, and | w de-
notestheunit vectorin the � direction.

Takingthecurl of theequationof motionandprojectingit
along | w , we obtain� r c r G $ ���<��t r3u � u ( ��z } f t\� �r3u � u } I � e r �� $ ��z { ( � � r � u c X5� �

(17)
where

 �z �F� � m � W � ��� � m � y � . In deriving Eq.(17)wehave
usedtheBoussinesqapproximationwhich consistsin thene-
glectionof thespatialvariationof thestationarystatedensity
in the inertial term of equationof motion, but not in conti-
nuity equationsinceit is thedriving termfor the interchange
instability. The componentof the flow perpendicularto the
ambientmagneticfield canbeconsideredconsistentlycoming
from the �Fa�e drift, takinginto accounttheidealOhm’slaw.
It is notedthat, if we neglect theeffect of themagneticfield,
we recover theRayleigh’s equationfor Kelvin-Helmholtzin-
stability [9].

Thedensityfluctuationcanbeexpressedas$ ���K��t r5u � u ( c X � f c �r � u } = (18)

wheretheprimedenotesthederivativewith respectto
W
. Now

c �r
is consideredasaconstantwhichintroducesadestabilizing

force.Theinductionequationis thesameasin theordinaryre-
ducedMHD equations[10] andundertheaboveassumptions
on thestationaryfieldsreadsas$ � � ��t r5u � u ( {�� e r �<~} = (19)

Equations(17)-(19)constituteaclosedsystemof equations.
We can seethat the static system(

t r3u � &
) governedby

theseequationsshowsHermitianproperty, andtheconvective
derivative (

t r3u*�� &
) bringsthe non-Hermitianpropertyinto

our system. It souldbe alsonotedthat this systemof equa-
tions is equivalentto RMHD equationsfor tokamaksof high
betaordering[10]. We will investigatetheeffect of theshear
flow on theinterchangeinstabilitiesin following sections.

IV. DERIVATION OF ORDINARY DIFFERENTIAL
EQUATION

In this section,we derive the ODE for the amplitudeof
Kelvin’s modes,given in Eq. (8), in the caseof interchange
instabilitiesof plasmas.Let us considerthe electromagnetic
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FIG. 1: Kelvin’s shearingmode ������5�7�D�.��� . The mode is being
stretcheddueto the   directedflow which is shearedin ¡ direction.

casewhere e r �s �� &
. The analysisfor electrostaticcase

(
, � e r � & ) is shown in Ref. [11]. ¿FromEqs.(18)-(19),we

have}�� f ��¢ Xu c � ¢ Xr $ �s�D��t r5u � u ( c X � $ e r �Y ( ¢ X $ �s�D��t r5u � u ( { =
(20)

Sincewe have assumedthemeanvelocity
t r5u �kt r3u $0WM(

and
thehomogeneousambientfield e r � $'& �8v u �8vxw (

, theoper-
ator

� � �@t r5u � u
commuteswith both

� ¢ Xu
and

$ e r �" ( ¢ X .
Thus acting on both sides of Eq. (20) with the operator$ � � ��t r5u � u ( ¢ X

givesc X � f c �r � u $ e r �< ( ¢ X { = (21)

¿FromEq.(19), �z }��F �z $ e r �^ ( ¢ X $ � � �
t r3u � u ( { = (22)

SubstitutingEqs.(20) and(22) into Eq. (17), andactingwithe r �� on bothsides,weobtain$ ������t r3u � u ( ��z $ �s�s��t r5u � u ( {�� $ e r �< ( �� r c r ��z { f
c �r �c r �M�u { =

(23)
Sincethe operatoron the right handsideis Hermitian,we

candecomposetheflux function
{

by meansof theshearing
eigenmodes { $- � !7( � ? A{ C $0!7( /+ $'!215, �  6("��, � (24)

where eacheigenmodecan be expressedby the sinusoidal
functionin oursimplifiedcase/+ $0!213, �  #( ��£L¤"¥ G ¦�§s[ W � ¦�§ u $ y�f t r3u !7( � ¦�§sw � I��£L¤"¥ G ¦ /§ [ $'!7(UW � ¦�§ u y � ¦�§ w � I¨= (25)

Here the meanflow is assumedto be
t r5u $'WM( �ª© W

and/§s[ $'!7( � §H[ f § u © ! . It is explicitly shown thatthewave num-
berin theflow sheardirectionis linearly increasingwith time
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dueto the distortingeffect of the meanflow. Sincecontinu-
ousv« ariationof

/§ [ $'!7(
preventsfrom imposingthe boundary

conditionin theboundeddomain,we will concentrateon the
analysisof localizedperturbationsby consideringtheinfinite
domain.Note that

/+ aretheeigenfunctionsof theright hand
sideof Eq. (23), andalsosatisfy the characteristicequation
(4). It shouldbenotedthat thepresenceof theLaplacianop-
erator in the left handside of Eq. (23) doesnot hinder the
applicationof Kelvin’smethodsincethemodes

/+ areaswell
eigenfunctionsof theLaplacian

 �z .
Thus,thetimeevolutionequationfor theamplitude

A{ C
can

bewrittenas��"!9¬< /§ [ $0!7( � � § �u�® � A{�"!�¯ � f±° �� r c r  /§ [ $'!7( � � § �u�® A{ f § �u
c �r �c r A{²�

(26)
where ° � , � e r � § u v r3u � § w^v r w , andwe have dropped
thesubscript

§
for simplicity. Wenoticethatin theabsenceof

shearflow (
©�� &

) theusualinterchangeinstability equation
for staticequilibriumcanbeobtained.

Normalizingthe time
!

by the poloidal Alfv én time ³Y´ �µ>¶ � r c r m ° , wecanrewrite Eq.(26) in dimensionlessform as��>!9¬Y /§s[ $'!7( � � § �u ® � A{�"!�¯ � f  /§s[ $'!7( � � § �u ® A{q� § �u ³ �´³ �· A{²�
(27)

wherethe wave vectorsarenormalizedby the characteristic
lengthscale µ and ³ �· � f c r m c �r � . Furtherwe canrewrite
Eq. (27) in theform� � A{�"! � � � $'!7( � A{�"! � G �%f¹¸ $0!7(�I A{�� & � (28)

where � $0!7( � f»º © §
u /§H[ $0!7(/§s[ $0!7( � � § �u �¸ $0!7( � § �u�¼/§s[ $0!7( � � § �u �

and

¼ � ³ �´ m ³ �· . Drawing an analogywith Newton’s equa-
tion, � $'!7( representsthe frictional term and ¸ $'!7( the inter-
changedrive term. Equation(28) is the correspondentof
Eq. (8). As we have mentionedin Sec.II, the time evolution
for theamplitudeof eacheigenmodeis no longerasimpleex-
ponentialfunction.Thebehavior of

A{
will bediscussedin the

following sections.

V. ASYMPTOTIC AND TRANSIENT BEHAVIOR OF EACH
MODE

In the absenceof a densitygradientor shearflow, � $0!7( �¸ $'!7( � &
in Eq. (28) andwe have a pureoscillation repre-

sentingthe Alfv énwave. If we includethe densitygradient,
then ¸ $'!7( �� &

andwe obtain the interchangeinstability for
negative

c �r
. Sincea homogeneousmagneticfield is assumed

in this paper, we have no stabilizing effect of the magnetic

Case ½J¾�¿�¾�ÀÂÁ ����Ã
Ä�� Á ����ÅgÆq�
(a) Ç È È
(b) È Ç È

TABLE I: Classificationof thesignsof parameterproduct½J¾�¿^¾�À and
effective frictional coefficient Á ���U� .
shear. Theoperatoris Hermitianin thesetwo cases,therefore
we have thesimpleexponentialevolutionwith time constants
for eachmode.

Whenwe includetheshearflow, we have � $0!7( �� & andwe
candraw ananalogywith thedynamicsof a dampedoscilla-
tor with timedependentfrictional coefficient � $0!7( . Whentime
goes, � $0!7( becomesalways positive, which meansa formal
dissipation,andthereforetheoscillationenergy of theAlfv én
wave

G $-� A{ mn�"!7( � � A{ � I0m º decreasesmonotonically. In thefol-
lowing subsectionswe will describeboth theasymptoticand
transientbehaviorsof theamplitudes

A{
.

A. Transient behavior

Let usfirst look thetransientbehavior of eachmode.Since
an analyticexpressionis not available, we discussthe tran-
sientsby qualitatively analyzingtheODE(28). In theabsence
of theinstability drive,wewill have��"! ¬nÉ � A{�"!�Ê � � A{Ë� ¯ � f � $'!7( É � A{�"!�Ê � � (29)

where � $'!7( � f º © §
u /§ [ $0!7(/§ [ $'!7( � � § �u �/§s[ $'!7( � §s[ f © § u !2=

Therefore,the frictional coefficient � $0!7( actsas a damping
force for �ÍÌ &

. Since the sign of the denominatorin� $'!7( is always positive, the behavior will be determinedby
that of the numerator. The numeratorcan be expressedasº © � § �u ! f º © §

u §s[
and accordingto its initial value we can

single out two classesof the transients. When the product© § u §s[
is negative[TABLE I(a)], thefrictional coefficient � $0!7(

is alwayspositivefrom thebeginning,thereforetheshearflow
actsasa dampingforceat any time andthemodeshows sim-
pledampedbehavior. Ontheotherhand,if theproduct

© § u § [
is positive [TABLE I(b)], thefrictional coefficient � $0!7( is ini-
tially negativeandchangesits signattheinstant

! � � § [ m © § u .
Thereforethe modeexperiencesan initial amplificationlast-
ing until the time

! � , which is evenfasterthanit would be in
thepresenceof theonly interchangedrive. This transientbe-
havior canalsobe seenby numericallyintegratingEq. (28)
which is shown in Fig. 3, wheretheinitial amplificationlasts
till the turningpoint

! � �ÏÎ &
followedby theasymptoticde-

cayingphase.
We have observedby numericalintegrationthat theampli-

tudecanbeamplifiedto valuesof � &HÐ r timeslarger thanthe
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initial one.¿Fromaphysicalpointof view, suchhugeamplifi-
cationsmaybreakdown thelinearity of theperturbationsand
may leadto a nonlinearstage.This caseis beyondthescope
of thelineartheoryandnosureconclusioncanbedrawn from
Kelvin’s method. Suchhugeamplificationsareexperienced
by modeswith large

! � and

¼
.

B. Asymptotic behavior

In orderto studythetime asymptoticbehavior, we assume!6ø §H[ m © § u
, � m © . In this timeasymptoticlimit weobtainthe

following ODE� ��"! � A{�� º ! ��"! A{¹� É �%f ¼ m © �! � Ê A{*� & � (30)

where

¼ � ³ �´ m ³ �· denotesthe magnitudeof the instability
drive term. In theabsenceof the instability drive

¼
, the time

asymptoticbehavior of thesolutionof Eq.(30) is expressedasA{�ù �!%ú ¦êû ! � (31)

which coincideswith theresultof Koppel[12] which consid-
ereda time dependentnon-perturbativestate.SinceEq. (30)
is thesphericalBesselequation,its generalsolutionfor

¼ �� &
is expressedby A{�� �¶ !KüUý X�þ�ÿ>$0!7( � ý ��� ÿ>$'!7(�� � (32)

where
þ�ÿ

and � ÿ denotethe Bessel functions, and � �$ ¼ m © � � � m���( X�� � . Thereforethe time asymptoticbehavior
of themodeis expressedgenerallyasA{�ù �!%ú ¦êû É ! f	� �º ��
 Ê � (33)

where



denotesaconstantphasedependingontheinitial val-
ues.Thereforethemodeoscillateswith amplitude

A{
decaying

with theinversepowerof time. While the
W

componentof the
perturbationmagneticfield

A� [
is proportionalto

{
, the y com-

ponent
A� u

is proportionalto
/§s[ $'!7( A{

. Thus
A� u

tendsto thepure
oscillatorybehaviorA� u ù ú ¦�û É ! f	� �º ��
 Ê � (34)

as
/§ [ $0!7(

increaseswith proportionalto time (seeFig. 3). It
shouldbe notedthat thereis no thresholdvalue for the sta-
bilization of the interchangeinstability, sincewe obtain the
samesphericalBesselequation(30) for all modes.All modes
evolveasin Eq.(30)independentlyof thevaluesof wavenum-
bers

,
.

The final amplitudeof eachmodedependssensitively on
the parameters.As the shearparameterincreases,the final
amplitudeof

A� u
tendsto belargerasis alsoshown by Chage-

lishvili et al. [13], while themixing dampingeffect on
A� [

in-
creases.It shouldbenotedthattheinstability drive

¼
asymp-

totically hasthe only effect to shift the phaseof the oscilla-
tions as can be seenin Eqs. (33) and (34), and it doesnot
affect theprincipaltime dependence.Thecombinedeffect of
the Alfv én wave propagationandshearflow mixing always
overcomesthe interchangedrive and the oscillationsof the
magneticflux asymptoticallydecaywith proportionalto the
inversepowerof time.

VI. SUMMARY

Kelvin’smethodof shearingmodesis interpretedasacom-
binationof modalandcharacteristicmethodsfor theanalysis
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of a non-Hermitiansystem.Moreover, theimportanceof this
analysis is that,Kelvin’smethodgivesthegeneralsolutionfor
specificshearflow problemwhich carriesthe non-Hermitian
operator. Physically, Kelvin’s modeshows that a shearflow
distortseachFourier mode,resultingin changeof the wave
number, which representsthe stretchingeffect of the shear
flow.

By meansof this method,we have analyzedthe incom-
pressibleelectromagneticperturbationsin thepresenceof an
interchangedriveandobtainedtheordinarydifferentialequa-
tion (28) for theamplitudeof themodes

A{6C
. All modesshow

asymptoticdecayproportionalto the inversepower of time
(non-exponential)without any thresholdvalue. This means
that the interchangeinstabilities are always dampedaway
at sufficiently large time due to the combinedeffect of the
Alfv énwavepropagationanddistortionof modesby meansof
thebackgroundshearflow; i.e.phasemixing effect. However,
thetransientbehavior is not commonfor all modes.Depend-
ing on the initial wave number, someof themshow transient
amplificationswhichareevenfasterthanthey wouldbein the
presenceof theonly interchangedrive. Theseamplifications
aresoconspicuousthatthey mayleadto thebreakdown of the
linearity of theperturbationfields. Moreover, sincethewave
numberincreaseslinearly with respectto time, viscousityor
resistivity mayactmoststronglyif we includethem. But the
mostimportantfact in this analysisis that, the mixing effect
of theshearflow is strongerthandestabilizationeffect dueto
gravitation,andthelattereffectdoesnot seriouslyactasymp-
totically.

It shouldbe notedthat, sinceour treatmentconsidersthe
caseof parallellinearshearflow, Kelvin-Helmholtzinstabili-
ties,which originatefrom thesecondorderspatialderivative
of the backgroundshearflow [9, 14], arebeyond the scope
of the presenttheory. ¿Froma mathematicalpoint of view,
we stressthat the Kelvin-Helmholtzinstability is a problem
involving purely non-Hermitianoperatorsin the sensethat
the operator

�
of Eq. (1) itself becomesnon-Hermitianand

thereforethe methoddevelopedin Sec.II cannotbe applied.
This is a well known instability in fluid dynamicswhoserig-
orousmathematicaltreatmentpresentshighly non-trivial dif-
ficulties.

We notethattheODE whichgivestheevolutionof theam-

plitudesof the interchangemodes(28) andthat of kink-type
modes(Eq. (32) in Ref. [15]) aremathematicallyequivalent.
Of coursethesetwo modesmayhavespatiallydifferentstruc-
tures,at leastthis is thecasefor staticequilibria.But this fact
meansthat they have no differencein time evolution,andwe
cansaythatthesetermshave thesameeffect in thesensethat
they enlargethespectrumto unstableeigenvalues.Thisequiv-
alencestemsfrom theassumptionof aspatiallyhomogeneous
magneticfield.
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