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Transientand secularbehaiors of interchang€dluctuationsare analyzedin an ambientshearflow by
invoking Kelvin's methodof shearingmodes. Becauseof its non-Hermitianproperty comple transient
phenomena&anoccurin a shearflow system.The combinedeffect of shearflow mixing andAlfv énwave
propagatiorovercomegheinstability driving force at sufficiently largetime, anddampsall fluctuationsof
themagneticflux. Onthe otherhand,electrostatigerturbationcanbe destabilizedor suficiently strong
interchangelrive. Thetime asymptoticoehaior in eachcaseis algebraignon-exponential).

I. INTRODUCTION

It is widely acceptedhata shearflow yields stabilizingef-
fectsonvariousfluctuationsthroughcorvective deformations
of disturbanceg1, 2]. However, rigoroustreatmentof the
shearflow effects encounters fatal difficulty arising from
thenon-Hermitian(nonselfdjoint) propertiesof the problem.
We may not considerwell-defined“modes” and correspond-
ing “time constants. The standardnormal mode approach
breaksdown, andthe theorymay fail to give correctpredic-
tionsof evolution evenif perturbatiorfieldsremainin thelin-
earregime. Thediscrepanciebetweerthetheoryandthe ex-
perimentonthestability limit of neutralfluids arereviewedin
Ref. [3]. Theaim of this work is to establisha solid founda-
tion for theanalysisof shearflow systemsWe applyKelvin’s
methodof shearingnoded4]. Thisschemepreviouslycalled
as‘nonmodal’approachactuallyconsistdn the combination
of two methodswhich have beenwidely usedin solvingwave
equationsthemodalandthe characteristicenethods.

Much work has beendone on instability problemswith
shearflows by meansof the ‘modal’ approach.lt is implic-
itly assumedn the applicationof the modalschemehatthe
motion canbe decomposeéhto a setof independenhormal
‘modes’ with certaintime constants.As is well-known, this
methodis effective in solving problemsinvolving Hermitian
operators however, when applyingit to non-Hermitiansys-
tems, we may overlook the secularand transientbehaiors.
On the otherhand,the characteristicsnethodhasbeenused
in thecontext of rapiddistortiontheoryfor analyzingthefluid
turbulence[5]. If we cantreatthe non-Hermitianpart of the
wholeoperatorasa singularperturbatiorto a Hermitianoper
ator[6], we maybeableto constructthetheoryin the frame-
work of the perturbatiortheoryfor the operator{7]. But un-
fortunatelythe corvergenceof the perturbatve seriesseems
to beveryambiguousn caseof theshearflows dueto thesec-
ularity of their time evolutions. Thus,a thoroughmathemat-
ical treatmentof the non-Hermitianpropertiesof shearflow
systemshasnot beenaccomplishedo far. In this paper we
haveanalyzedheshearflow effectoninterchangénstabilities
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andits non-Hermitianrmathematicabackgroundgderiving the
time asymptotidbehavior by meanf Kelvin’'s method.

We will first revisit Kelvin’s methodfrom the viewpoint of
the characteristicenethod(Sec.ll). We will review the spec-
tral theory focusingon the generalmathematicatonceptof
eigenmoden orderto gainabetterunderstandingf Kelvin’s
method. In Sec.lll, we will formulatethe equationgfor the
interchangenstabilities. In Sec.lV, we will derive the ordi-
nary differentialequation(ODE) in time for the evolution of
the amplitudeof the interchangenstabilitiesby applyingthe
analysisof shearingmodes.In Sec.V, by drawing the anal-
ogy with Newton’s equationit will be shovn thatthe solution
to the abore mentionedODE for the flux function exhibits an
asymptoticdampedbehavior without ary thresholdof insta-
bility drive. We will summarizeheresultin Sec.VI.

I1.  NON-HERMITIAN PROPERTY OF SHEAR FLOW
SYSTEMS

Beforeformulatingtheinterchangénstability equationslet
us describea rough sketch of the problemand explain the
mathematicatool to analyzethe non-Hermitiandynamics.
The linearizeddynamicsof fluid systemsn the presenceof
shearedlow is governedby a generalkequationof the follow-

ing type;
du+v-Vu = Au, 1)

where A denotesa Hermitian differential operator (time-
independent)lefinedin a Hilbert spaceV/, v is the stationary
meanflow, andu ( € V') denotesa perturbatiorfield.

It is the corvective derivative, v - V, that introducesthe
non-Hermitiampropertyinto problem(1) andpreventsthepos-
sibility of representinghe dynamicsof the systemsn terms
of orthogonaland completesetof eigenfunctions.This is a
well known difficulty in the stability analysisof neutralflu-
ids, suchasCouetteor Poiseilleflows, wherethe predictions
obtainedby meansof the modal methodsdo not matchthe
experimentq3].

In the caseof a spatiallyinhomogeneoustationaryflow v,
Eq.(1) becomesion-Hermitiaranda straightforwardspectral
resolutionis not effective. However, Kelvin’'s methodpermits
to resolhe, for someclassef meanflows, the evolution of



the system(1) into new typesof modesby meansof which
bothtransientandseculamasymptotidbehaiorsareeffectively
described.Let us now explain the mathematicafoundations
of thisscheme.

As mentionedin Sec.l, Kelvin’s methodconsistsin the
combinedapplicationof two methodswhich have beenex-
tensvely usedin theanalysisof wave equationsPreciselythe
“Lagrangian”partof Eq. (1), 8; + v - V, is solved by means
of the characteristicsnethodandthe “Hermitian” part 4 by
meansof the standardspectraresolution.

The characteristicsnethodis appliedto solwe the charac-
teristic ODE associatedo the Lagrangianderivative moving
alongthecharacteristicurve of theambientmotion,whichis
givenby

X v, 2(0)=¢ 2)

By inverting the modes,which are expressedn Lagrangian
coordinatesas p(k, £), they will be representedn Eulerian
coordinatess

o(t; k, ) = p(k,&(t; ), 3)

where&(t; ) denotesthe inverseof x(t;£). The existence
of theinversemappingz(t) — £ is guaranteedh the caseof
incompressiblenearflows. Dueto Eq.(3), ¢(¢; k, x) satisfies
thecharacteristi@quation

0(t; k, @) +v - V(t; k, @) =0, (@)

The essentialcondition for the applicability of Kelvin's
methodconsistsin the constraintfor the functionsg(¢; k, )
to form the completesetof eigenfunctionof the operatorA.
If sucha setof eigenfunctionsxists, we candecompos¢he
perturbatiorfield v by meansof

u=/ﬁdﬂﬂt&wdk (5)

We notice that dueto Eq. (3) the eigervaluesof A become
time dependentThe new eigervalueproblemfor 4 reads

Ag(t; k,x) = M (t) §(t; k, ). (6)

PluggingEq. (5) into Eqg. (1) and exploiting Egs.(4) and
(6), we have

[0 ptiska)ak = [ a(Ore(0) p(6 )

(7)
Due to the orthogonalityof the modesj(t; k, ), the evolu-
tion of 4y, is governedby theequation

S elt) = Me(t) ). ®)
If $(t; k, x) donotsatisfybothconditionsgivenby character
istic equation(4) andeigenequatioti6), Eq. (7) will have ad-
ditionaltermswhichrepresenthecomplicatednodecoupling
andthustheapplicabilityof Kelvin’'s methodis compromised.

Due to the time dependenceresentin the eigervalues
Ax(t), the evolution of 4 (¢) will not exhibit a simpleexpo-
nentialdependenceasin the Hermitian case,but more com-
plicatedbehaiors, which arecharacteristiof non-Hermitian
systems. By analyzingthis ODE, the motion of eachmode
can be classified,and the time asymptoticbehaior can be
alsoshavn. The following sectionswill be devotedto the
derivation of ODE (8) andthe discussiorof the behaior of
its solutionfor interchangenstabilitiesin plasmaswith shear
flow.

Finally, let usclosethis sectionby presentinghefollowing
theorem.Theproofis shovnin Ref.[8]

Theorem |1.1 Let us considerin an unboundeddomainthe
systemof PDEs

(0 + A(z) - V)[L(t)p] = H(t) )
where

1. A(z) is ann-dimensionalectorfunctionlinearin the
componentsf = (z1,...,2,)

2. L(t,0pyy---,05,) and H(t,0p,,...,0;,) are linear
differentialmatrix (m x m) operatorsdependingex-
plicitly on time, which acton a m-dimensionalvector
functione)

Thenthe solutionsof Eq. (9) obtainedby meansof Kelvin’s
methodaregeneral.

1. FORMULATION OF INTERCHANGE INSTABILITIES

In this section,we will derive the equationdor stationary
flowing plasmas Specificallywe will investigatethe effect of
shearflows on interchangenstabilitiesof plasmaunderthe
influenceof homogeneoumagnetidield.

In thepresencef gravitationalforce, theidealMHD equa-
tionsreadas

dv .
pg =J*xB-Vptpg, (10)
dp
£ v = 11
dt+pV v =0, (11)
%—?—VX(’UXB)—O, (12)
V-v=0, (13)

wherep, B, andg arethe density magneticfield, andgravi-
tational constantvector andd/d¢ = 9; + v - V denoteshe
Lagrangiarderivative. Herewe assumeheincompressibility

of thevelocity field v, insteadof usingthe equationof state.
Theambienffields(denotedy thesubscrip0) mustsatisfy
povo - Vvg = Jo X Bo — Vpo + pog- (14)
If we considera parallel stationaryshearflow of the form
vo = (0,v04(),0), straighthomogeneousnagneticfield



B, = (0, By, B;), andgravitational force actingin the pos-
itive 2 direction, the cornvective derivative givesno contribu-
tion to the stationarystateandEq. (14) is reducedo

Vpo = pog- (15)
The perturbedmagneticandvelocity fields areassumedo

be two dimensionain z-y plane,andthuswe canintroduce
thepoloidalflux functionandstreamfunction;

Bl_L = V’(b X €y,

V11 = v¢ X €z, (16)
wherethe subscriptl denoteghe perturbedquantities, L ex-
presseghe direction perpendiculato the z axis,ande, de-
notesthe unit vectorin the z direction.

Takingthe curl of the equationof motion andprojectingit
alonge, we obtain

topo[ (8 +voyOy) V7 d— v, 0y p] = BO'V(VE¢)+M03yﬁ%
whereV? = §2/0z* + 62 /0y*. In derving Eq. (17) we have
usedthe Boussines@pproximatiorwhich consistsn the ne-
glectionof the spatialvariationof the stationarystatedensity
in the inertial term of equationof motion, but not in conti-
nuity equationsinceit is the driving termfor the interchange
instability. The componenbf the flow perpendiculato the
ambientmagnetidield canbe considereaonsistentlycoming
fromthe E x B drift, takinginto accountheidealOhm’slaw.
It is notedthat, if we neglectthe effect of the magneticfield,
we recover the Rayleighs equationfor Kelvin-Helmholtzin-
stability [9].

Thedensityfluctuationcanbe expresseds

(0t + voy0y)p1 = —poOy . (18)
wherethe primedenoteshederivative with respecto 2. Now
P4 is consideredisaconstantvhichintroducesadestabilizing
force. Theinductionequationis thesameasin theordinaryre-
ducedMHD equationg10] andunderthe abore assumptions
onthestationaryfieldsreadsas
(0¢ + v0y0y)¢) = Bo - V. (19)

Equationg17)-(19)constituteaclosedsystenof equations.
We can seethat the static system(vg, = 0) governedby
theseequationshovs Hermitianproperty andthe corvective
derivative (vo, # 0) bringsthe non-Hermitianpropertyinto
our system. It souldbe alsonotedthat this systemof equa-
tionsis equivalentto RMHD equationgor tokamaksof high
betaordering[10]. We will investigatethe effect of the shear
flow ontheinterchangenstabilitiesin following sections.

IV. DERIVATION OF ORDINARY DIFFERENTIAL
EQUATION

In this section,we derive the ODE for the amplitude of
Kelvin's modes,givenin Eq. (8), in the caseof interchange
instabilitiesof plasmas.Let us considerthe electromagnetic
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FIG. 1: Kelvin's shearingmode ¢(¢; k, ). The modeis being
stretcheddueto they directedflow whichis shearedn «x direction.

casewhere By - V # 0. Theanalysisfor electrostaticcase
(k - By = 0) isshovnin Ref.[11]. ¢ FromEQs.(18)-(19),we
have

¢ =—0,"py " (8 +voy0y)p1 = (Bo - V)~ (8, + 'UOyay()z'(é-)
Sincewe have assumedhe meanvelocity vo, = vo, () and
the homogeneouambientfield By = (0, By, B;), the oper

ator 8, + vo,d, commuteswith both g, and (B, - V).

Thus acting on both sides of Eq. (20) with the operator
(O + voy0y) ! gives

p1 = —pydy(Bo - V)" ' (21)

¢FromEg. (19),

Vi = VE(Bo V)@ + o0 (22)

Substitutingegs.(20) and(22) into Eq. (17), andactingwith
By - V onbothsideswe obtain

(Bo ‘V)2 2 969 2
Hopo iy 0 6y¢'
(23)
Sincethe operatoron the right handsideis Hermitian,we
candecomposehe flux functiony by meansof the shearing
eigenmodes

(Bt +v0y By ) VI (8y + v0y By ) =

vlw0) = [0 otk ) dk. (24)
where eacheigenmodecan be expressedby the sinusoidal
functionin our simplifiedcase

P(t; k, x) = explikzx + 1ky(y — voyt) + ik, 2]

= explik, )z + ik, y + ik, z]. (25)

Here the meanflow is assumedo be v, (z) = oz and

kg (t) = ki — kyot. It is explicitly shovn thatthewave num-
berin the flow sheardirectionis linearly increasingwith time



dueto the distorting effect of the meanflow. Sincecontinu-
ousvariationof k,(t) preventsfrom imposingthe boundary
conditionin the boundeddomain,we will concentraten the
analysisof localizedperturbationdy consideringheinfinite
domain. Note that$ arethe eigenfunction®f theright hand
side of Eq. (23), and also satisfy the characteristicequation
(4). 1t shouldbe notedthatthe presencef the Laplacianop-
eratorin the left handside of Eg. (23) doesnot hinder the
applicationof Kelvin’'s methodsincethe modesp areaswell
eigenfunction®f the LaplacianV?.

Thus, thetime evolution equatiorfor the amplituder);, can
bewritten as

Al (5 2 g2 W] __ P
dt[o%(t) +ky) dt] "~ popo

(26)
whereF' = k - By = kyBoyy + k. By, andwe have dropped
the subscript: for simplicity. We noticethatin theabsencef
shearflow (¢ = 0) the usualinterchangenstability equation
for staticequilibriumcanbe obtained.

Normalizingthe time ¢ by the poloidal Alfv éntime 74 =
a/popo/ F, we canrewrite Eq. (26) in dimensionlesform as

i 7. 2 2 d_@[’ _ 7. 2 2\ ,7 2j n
= [(kw(t) +52) dt] = = (k0 +£2) ) + K3
(27)
wherethe wave vectorsare normalizedby the characteristic
lengthscalea and 72 = —po/phg. Furtherwe canrewrite
Eq.(27)in theform
d24) di) .
g TG F-s@ =0, (28)
where
20k, k, (t
ult) = —22kel)
ke (t)? + K2
k2G
St) = —2

ko ()2 + k2

andG = 73/7Z. Drawing ananalogywith Newton’s equa-
tion, u(t) representghe frictional term and S(t) the inter-
changedrive term. Equation(28) is the correspondenbf
Eq. (8). As we have mentionedn Sec.ll, thetime evolution
for theamplitudeof eacheigenmodés nolongerasimpleex-
ponentialfunction. Thebehaior of gﬁ will bediscussedh the
following sections.

V. ASYMPTOTIC AND TRANSIENT BEHAVIOR OF EACH
MODE

In the absencef a densitygradientor shearflow, u(t) =
S(t) = 0in Eq. (28) andwe have a pure oscillationrepre-
sentingthe Alfv énwave. If we includethe densitygradient,
thenS(t) # 0 andwe obtainthe interchanganstability for
negative pj. Sincea homogeneoumagnetidield is assumed
in this paper we have no stabilizing effect of the magnetic

!
Fa(t)? + k2) p—k2 200
(ko0 + 1) 9-k; 229

Case ok.k, p(t=0) u(t— o)
(a) - + +
(b) + — +

TABLE I: Classificatiorof thesignsof parameteproducios k. k, and
effective frictional coeficient u(t).

shear The operatolis Hermitianin thesetwo casestherefore
we have the simpleexponentialevolution with time constants
for eachmode.

Whenwe includethe shearflow, we have u(t) # 0 andwe
candraw ananalogywith the dynamicsof a dampedoscilla-
tor with time dependentfrictional coeficientu(t). Whentime
goes, u(t) becomesalways positive, which meansa formal
dissipationandthereforethe oscillationenegy of the Alfv én
wave [(di)/dt)? + %] /2 decreasemonotonically In thefol-
lowing subsectionsve will describeboththe asymptoticand
transienbehaiors of theamplitudes).

A. Transient behavior

Let usfirst look thetransientbehaior of eachmode.Since
an analytic expressionis not available, we discussthe tran-
sientsby qualitatively analyzingthe ODE (28). In theabsence
of theinstability drive, we will have

A8 4] o5

20k l}w t
ult) = — 22l W)
ko(t)? + K2
ko(t) = ky — okyt.

(29)

where

Therefore,the frictional coeficient u(t) actsasa damping
force for p > 0. Since the sign of the denominatorin
u(t) is always positive, the behaior will be determinecby
that of the numerator The numeratorcan be expressedas
20%k3t — 20kyk, andaccordingto its initial value we can
single out two classef the transients. When the product
okyk, isnegative[TABLE I(a)], thefrictional coeficient 14(¢)
is alwayspositive from the beginning,thereforethe shearflow
actsasa dampingforce atary time andthe modeshaows sim-
pledampedehaior. Ontheotherhand,if theproductok,k,
is positive [TABLE I(b)], thefrictional coeficient u(¢) is ini-
tially negatveandchangests signattheinstantt, = k, /ok,.
Thereforethe modeexperiencesan initial amplificationlast-
ing until thetime ¢, which is evenfasterthanit would bein
the presencef the only interchangarive. This transientbe-
havior canalsobe seenby numericallyintegrating Eq. (28)
whichis shavn in Fig. 3, wheretheinitial amplificationlasts
till theturningpointt, = 50 followed by the asymptoticde-
cayingphase.

We have obsenedby numericalintegrationthatthe ampli-
tude canbe amplifiedto valuesof 10%° timeslargerthanthe
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FIG. 2: Time evolution of thewave vectork. We have takeno > 0,
ky > 0.
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FIG. 3: Direct numericalintegrationof Eq. (28) for eachmode.The
parameterarefollows: k, = 10,ky =1,k. =0,0 =0.2,G =1,
andinitial perturbations) = 0 andd+)/dt = 1.0 att = 0.

initial one. ¢, Froma physicalpoint of view, suchhugeamplifi-

cationsmay breakdown thelinearity of the perturbationand
may leadto a nonlinearstage.This caseis beyondthe scope
of thelineartheoryandno sureconclusioncanbedrawn from

Kelvin's method. Suchhugeamplificationsare experienced
by modeswith larget. andG.

B. Asymptotic behavior

In orderto studythetime asymptoticbehaior, we assume
t > ky/oky, 1/0. In thistime asymptotidimit we obtainthe

following ODE

(30)

whereG = 7% /72 denotesthe magnitudeof the instability

driveterm. In the absencef theinstability drive G, thetime

asymptotidbehaior of thesolutionof Eq.(30) is expresse@s
~ 1

P~ n sint, (31)

which coincideswith theresultof Koppel[12] which consid-

eredatime dependenhon-perturbatie state. SinceEq. (30)

isthesphericaBessekquationjts generabkolutionfor G # 0
is expressedy

~

b= —(Cr(t) + CY, (1)), (32)

(
Vit
where J, and Y, denotethe Besselfunctions,and v =

(G/a? + 1/4)1/2. Thereforethe time asymptoticbehavior
of themodeis expressedjenerallyas

~ 1

b~ ;sin(t— %”+5),
whered denotesa constanphasedependingntheinitial val-
ues.Thereforehemodeoscillateswith amplitudey) decaying
with theinversepower of time. While thez componentf the
perturbatlormagnetldleld by is proportlonalto 1, they com-

ponentb is proportionatto &, ()1/1 Thusb tendsto the pure
oscillatorybehaior

I;ywsin<t—%+6>,

ask,(t) increaseswith proportionalto time (seeFig. 3). It

shouldbe notedthat thereis no thresholdvalue for the sta-
bilization of the interchangeinstability, sincewe obtainthe
samesphericaBesselequation(30) for all modes. All modes
evolveasin Eqg.(30)independentlypf thevaluesof wave num-
bersk.

The final amplitudeof eachmodedependssensitiely on
the parameters.As the shearparametetincreasesthe final
amplitudeof By tendsto belargerasis alsoshovn by Chage-
lishvili etal. [13], while the mixing dampingeffecton by in-
creaseslt shouldbe notedthattheinstability drive G asymp-
totically hasthe only effect to shift the phaseof the oscilla-
tions as can be seenin Egs. (33) and (34), andit doesnot
affectthe principaltime dependencel he combinedeffect of
the Alfv én wave propagatiorand shearflow mixing always
overcomesthe interchangedrive and the oscillationsof the
magneticflux asymptoticallydecaywith proportionalto the
inversepower of time.

(33)

(34)

VI. SUMMARY

Kelvin’smethodof shearingnodess interpretecasa com-
binationof modalandcharacteristianethodsor the analysis



of anon-Hermitiansystem.Moreover, theimportanceof this

analysiss that,Kelvin’s methodgivesthegenerabkolutionfor

specificshearflow problemwhich carriesthe non-Hermitian
operator Physically Kelvin’s modeshaws that a shearflow

distortseachFourier mode, resultingin changeof the wave

number which representghe stretchingeffect of the shear
flow.

By meansof this method,we have analyzedthe incom-
pressibleelectromagnetiperturbationsn the presencef an
interchangalrive andobtainedthe ordinarydifferentialequa-
tion (28) for the amplitudeof the modesi);. All modesshov
asymptoticdecayproportionalto the inversepower of time
(non-exponential)without ary thresholdvalue. This means
that the interchangeinstabilities are always dampedaway
at sufficiently large time due to the combinedeffect of the
Alfv énwave propagatioranddistortionof modesy meanof
thebackgroundhearflow; i.e. phasemixing effect. However,
thetransientoehaior is notcommonfor all modes.Depend-
ing on theinitial wave number someof themshow transient
amplificationswhich areevenfasterthanthey would bein the
presencef the only interchangedrive. Theseamplifications
aresoconspicuoushatthey mayleadto thebreakdown of the
linearity of the perturbatiorfields. Moreover, sincethe wave
numberincreasedinearly with respecto time, viscousityor
resistizity mayactmoststronglyif we includethem. But the
mostimportantfactin this analysisis that, the mixing effect
of the shearflow is strongerthandestabilizatioreffect dueto
gravitation, andthe latter effect doesnot seriouslyactasymp-
totically.

It shouldbe notedthat, sinceour treatmentconsidershe
caseof parallellinear shearflow, Kelvin-Helmholtzinstabili-
ties, which originatefrom the secondorderspatialderivative
of the backgroundshearflow [9, 14], are beyond the scope
of the presenttheory ¢Froma mathematicapoint of view,
we stressthat the Kelvin-Helmholtzinstability is a problem
involving purely non-Hermitianoperatorsin the sensethat
the operatorA of Eq. (1) itself becomeson-Hermitianand
thereforethe methoddevelopedin Sec.Il cannotbe applied.
This is a well known instability in fluid dynamicswhoserig-
orousmathematicatreatmentpresentsighly non-trivial dif-
ficulties.

We notethatthe ODE which givesthe evolution of theam-

plitudesof the interchangemodes(28) andthat of kink-type
modes(Eqg. (32) in Ref.[15]) aremathematicallyequivalent.
Of coursethesetwo modesmayhave spatiallydifferentstruc-
tures,atleastthisis the casefor staticequilibria. But this fact
meanghatthey have no differencein time evolution, andwe
cansaythatthesetermshave the sameeffectin the sensehat
they enlagethespectrunto unstablesigervalues.Thisequi-
alencestemdrom theassumptiorof a spatiallyhomogeneous
magnetidield.
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