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I. INTRODUCTION  
   It has been recognized that a shear flow may have a strong effect on transport and stability. However, the 
modes analyzed have largely been limited to electrostatic [1] and ballooning modes [2], and only the 
toroidal equilibrium flow has been taken into account. For high beta plasmas, the effect of flow on a global 
mode stability has received little attention although recent measurements on neutral beam driven STs may 
indicate significant poloidal and toroidal sheared flow [3]. Global modes of a Z-pinch with axial flow was 
investigated in Refs. [4] and [5] using a spectral treatment of the flowing one-fluid MHD model.  This is the 
same plasma model considered by Frieman-Rotenberg [6]. A completely different approach, the theory of 
minimum energy states for a two species magnetofluid predicts that the relaxed states have large poloidal 
and toroidal flows with  significant pressure gradients [7].  
   For detailed study of the effect of flow on the global mode stability of the high beta plasmas, it is useful to 
develop a simple model capable of comparing the stability of static and flowing equilibria. We present here 
a new formalism of stability analysis of flowing two-fluid plasmas. The basic equations are described in 
Sec.2. To simplify the analysis, we assume constant density. In Sec.3, the coupled equations for 2-D 
axisymmetric equilibria with both toroidal and poloidal flows are reviewed. The stability formalism is 
presented in Sec.4. Here a  new relation between the perturbed magnetic field and the ion displacement is 
derived. Important differences between two-fluid and one-fluid plasmas are shown. In Sec. 5 results are 
shown, and Sec.6 summarizes the paper and presents a plan for future work.  
 
 
II. BASIC EQUATIONS 
  It is assumed that plasma consists of an ion fluid and an electron fluid. To simplify the analysis, we also 
assume that the density is constant in time and uniform in space ( const.=≡≅ nnn ei ). The continuity 
equations imply that the each fluid species is incompressible. The basic equations that govern the system are 
given by 
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where αm , αq , αu , αp , E  and B  are the mass, charge, velocity, and pressure of a fluid species, the 
electric field and the magnetic field, respectively. The subscript α ei   , =  denotes the species, and c  is the 
speed of light. The displacement current is neglected in (2.3). In the following the electron mass is neglected 
because attention is limited to the stability of low frequency modes.  In the following, the subscript 0 (1) e.g.  

0iu  ( 1iu ) denotes the equilibrium (perturbed) quantity. 
 
 



 

 

III. AXISYMMETRIC EQUILIBRIUM 
  The general formulation of axisymmetric two-fluid equilibria was presented in Ref. [8]. Assuming also 
uniform density the equilibrium magnetic field and flow can be expressed using the magnetic flux function 

),( zrψ  and the ion stream function ),( zriψ as  
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where θ̂  is the unit vector in the azimuthal direction and cylindrical coordinates ( )zr ,,θ  are used. Then, 
the following algebraic relations follow [8]. 
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where 0Eφ  is the electrostatic potential, )(ψΦ  and )(ψeH are arbitrary functions of ψ , and )( ii ψΦ  

and )( iiH ψ are arbitrary functions of iψ . The functions )(ψeH and )( iiH ψ are total enthalpies (per 
particle) of each fluid species. Using these expressions the equilibrium equations reduce to a coupled 
system for ψ and iψ , 
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where ∗∆ is the Grad-Shafranov operator, and the prime denotes the derivative of a function, e.g.  
( ) ψψ ddΦ=Φ′ . 

 
Note that the coupled system has four arbitrary functions. By virtue of the incompressibility assumption, 
this system is much simpler than the more general one given in Ref.[8].  In the absence of flow, (3.7) reduces 
to the familiar Grad-Shafranov equation. 
  
 
IV. STABILITY ANALYSIS 
  Introduce the Lagrange displacement vector of the ion fluid ξ  as in Ref. [9] 
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Then, the incompressibility implies 

0=•∇ ξ    (4.2) 
Taking the curl of the perturbed equation of motion of the ion fluid leads shortly to 

( )01 ΩΩ ××∇= ξ   (4.3) 

where 000 BuΩ
c
em ii +×∇=  is the equilibrium generalized vorticity of the ion fluid [7] and 1Ω  is its 

perturbation. The relation (4.3) is natural extension of the one-fluid model [6] where 1Ω  takes the place of 

1B  and 0Ω  takes the place of 0B .  This generalization is one of the most important results of the two fluid 
analysis.  
 
 



 

 

  Taking the sum of the perturbed equations of motion of the ion and electron fluids leads to 
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where the sum of the two perturbation pressures is 111 ei ppp +≡  and 
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and from (4.3) the perturbed magnetic field 1B  is expressed as, 
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Note that (4.4) with (4.5) has the same form as the Frieman-Rotenberg equation [Eqs. (25) and (26) in 
Ref.[6]] except for difference in the relation between 1B  and ξ shown here in (4.6). The first term of right 
side of (4.6) is the conventional one-fluid result; the second is from the Hall effect and the third is a 
combination of the Hall effect and ion flow.  
  To investigate the stability of the axisymmetric 2-D equilibrium, the ion displacement vector can be 
expressed as 

           ( )[ ]   exp),(ˆ tizr ωθ −= lξξ        (4.7) 
where l is the azimuthal mode number and ω  the angular frequency. Then (4.4) can be reduced to coupled 

equations for rξ  and zξ  where ω  plays a role of the eigenvalue. If the equilibrium depends only on the 

radial coordinate, i.e. the axisymmetric, infinitely long 1-D equilibrium, the displacement vector can be 

expressed as 

  ( ) ( )[ ]tir W ω−•= rkexp
~ξξ        (4.8) 

where k
rW zθk ˆˆ += l

, k  is the axial wave number, and ẑ  is the unit vector in the axial direction. In this 

case, the coupled equations for rξ  and zξ  reduce to the following 4th order differential equation for the 
radial displacement rξ . 
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where the coefficients nA  ( 4,3,2,1,0=n ) are the functions of ( ) )(, ,, , 00 rrk iuBlω .  In several places 
in these coefficients appears the quantity W , which is defined as 

( )( ) ( )( )0000 iWWeWiWW ΩkBkukuk ••−•−•−≡ ωω   (4.10) 
Here the difference between the one- and two-fluid models is apparent; in the one-fluid model, the above 
W  function reduces to 
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The first term in (4.11) represents the Doppler shift due to the ion flow.  In a two fluid, however, Doppler 
shifts due to both the ion and electron flows appear. The effect of the electron flow can be significant in 
some configurations.  The role of the second term in (4.11) is also critical in determining the stability 
because 00 =• BkW  defines magnetic rational surfaces.  In a two fluid however, (4.10) not 0Bk •W  

but also the quantity 0Ωk •W appears. This implies that not only the magnetic rational surface but also the 

vorticity rational surface where 00 =• ΩkW  affect the stability.  
 



 

 

V. RESULTS 
Although the coupled equations (3.7) and (3.8) can express various equilibria, we show here, as a 

preliminary result, a flowing ST-like high-beta equilibrium with infinite elongation, i.e. the equilibrium 
depends only on the radial coordinate r. In this configuration the axial external current flows in the center 
conductor and the plasma is confined inside the separatrix ( arr ≤≤0 ). Figure 1 shows the result. The 
magnetic field and the flow are normalized by ( )aB z0  (the axial component of the magnetic field at r=a) 

and nmaBV izA π4)(0≡  (the reference Alfven speed based on that field), respectively. For this 
example, the size parameter 100=≡∗ caS piω , and the total average beta 

68.082
000 =>+<><>≡< πβ Bpp . Observe that (1) the magnetic structure is paramagnetic 

although the beta value of this equilibrium is high compared with conventional STs [10], and (2) both the 
azimuthal and axial flows are nearly the reference Alfven speed.  

In order to compare the stability of flowing two-fluids, we are also studying the stability of static 
one-fluid equilibria. For the later we employ, instead of the conventional treatment [11], the new formalism 
which results from the incompressibility assumption as in (2.1). The validity of this stability formalism was 
tested for well-known configurations. Figure 2 shows the stability of static equilibria in the same geometry 
shown in Fig.1. The lowest order kink mode (azimuthal mode number 1=l ) is investigated with various 
values of the axial wave number k . In the one-dimensional geometry l  is analogous to the toroidal mode 
number and k  is analogous to the poloidal mode number.  In Fig.2-a, the horizontal axis shows the ratio 

( ) ( )aBrB z000θ , representing the ratio of the azimuthal component of the magnetic field at 0rr =  
produced by the axial external current to the axial component of the magnetic field at ar = .  This is 
analogous to a ratio of toroidal-to-poloidal magnetic fields.  The vertical axis shows the quantity 

( ) ( )( )
MrrV rBrB =−θ0 where ( )rBV  is the vacuum magnetic field produced by the current flowing in the 

center conductor and Mr  is the magnetic axis location defined by ( ) 00 == Mz rrB . The total average beta 
>< β is also shown in the right side.  Red triangles indicate “unstable” and blue diamonds indicate “stable”. 

The orange, yellow and green triangles show “less and less unstable”. Hence, as the quantity 
( ) ( )( )

MrrV rBrB =−θ0 , which is proportional to the center column current, increases, the system becomes 

more unstable. As the ratio ( ) ( )aBrB z000θ  increases, the system becomes more stable and is fully 

stabilized for sufficiently large values. Note that the ratio ( ) ( ) 1000 ≈aBrB zθ  for the equilibrium shown in 
Fig.1. The dependence of the growth rates on ( ) ( )aBrB z000θ  for ( ) ( )( ) 4.00 =− = MrrV rBrB θ  (the total 

average beta 5.0≈ ) is shown in Fig.2-b. The growth rate is normalized by the quantity aVA . The yellow 
(green) curve shows the growth rates of the most  (second most) unstable modes for a given equilibrium.  

 
  

VI. SUMMARY 
  We have developed the spectral formalism of the stability analysis of flowing two-fluid plasmas. For 
axisymmetric equilibria, the coupled equations for the flux function and the ion stream function in the 
reduced case of uniform density are derived. This coupled system has four arbitrary surface functions while 
the Grad-Shafranov equation has only two. Minimum energy equilibria [7] with constant density is the 
subset of these equilibria. As a preliminary example of the two-fluid equilibria, a flowing ST-like high-beta 
equilibrium with infinite elongation was examined.  

In the stability analysis, a new relation between the perturbed magnetic field and the ion displacement 
was derived. This relation is the natural generalization of Frieman and Rotenberg’s flowing one-fluid model. 
The coupled equations which describe the stability of the axisymmetric 2-D equilibria are derived. For 1-D 
equilibria these reduce to a 4th order differential equation for the radial displacement rξ . This equation 
includes the Doppler shifts due to both the ion and electron flows. These effects and the effects of the 
vorticity rational surface will have an important effect on stability. To study these effects is a focus of future 
work.  To compare the stability of static and flowing equilibria, we will find equilibria with a broad range of 
flow speed and apply the present stability formalism to them.  
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