High-beta toroidal equilibrium with a strong shear flow
— Double-Beltrami states —
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I. INTRODUCTION

A general solenoidal (divergence-free) vector field,
such as a magnetic field or an incompressible flow,
can be decomposed into an orthogonal sum of the
Beltrami fields, V x G; = A\;G; [1]. Nonlinear dy-
namics of plasmas induce complex couplings among
these Beltrami fields. In a single-fluid MHD plas-
ma, however, the relaxed state is expressed by a s-
ingle Beltrami magnetic field, resulting in the self-
organization of a force-free equilibrium, which is the
Taylor relaxed state [2].

In a two-fluid MHD plasma, by relating the veloc-
ity and the magnetic fields, a more general relaxed
state is given by a double Beltrami field that is ex-
pressed by the superposition of two different Beltra-
mi fields [3]. The double Beltrami fields, where veloc-
ity and magnetic fields are strongly coupled, include
field structures far richer than the conventional sin-
gle Beltrami fields. This new set of relaxed states,
despite its simple mathematical structure, can ex-
press a variety of plasma states and explain interest-
ing phenomena. Furthermore, it is shown that a gen-
eralized Bernoulli condition is satisfied simultaneous-
ly with the Beltrami condition. As the generalized
Bernoulli conditions describe homogeneous distribu-
tions of the energy density, the Beltrami-Bernoulli
states may follow from the concept of relaxed states.
In the two-fluid MHD, the Beltrami-Bernoulli con-
dition predicts the possibility of producing a very
high-beta equilibrium, which is not allowed in the
single Beltrami states. The double Beltrami field
can be classified as a relaxed state that has a more
complicated structure (higher energy) than the sin-
gle Beltrami field.

II. BELTRAMI-BERNOULLI CONDITION

We start with reviewing the prototype equation
for vortex dynamics. Let w be a three dimension-
al vector field representing a certain vorticity in R®.
We consider an incompressible flow U that trans-
ports w. When the circulation associated with the

vorticity is conserved everywhere, this w obeys the
equation

%w—Vx(wa)ZO. (1)

The general steady states of (1) are given by
U xw = Vg, (2)

where ¢ is a certain scalar field, which physically
corresponds to the energy density (pressure) in the
original (decurled) equation.

The Beltrami condition, which demands alignment
of vortices and flows, is expressed by

w = U, 3)

where p is a certain scalar function. The Beltrami
condition (3), thus, gives a special class of solution
such that

Uxw=0=Ve. (4)

The former equality is the Beltrami condition, while
the latter, demanding that the energy density is ho-
mogeneous, is a “generalized Bernoulli condition”.

Normalizing the length by the ion skin-depth, the
magnetic field B by an appropriate measure of the
magnetic field and the fluid velocity V' by the cor-
responding Alfvén speed, we can cast the electron
(j = 1) and ion (j = 2) equations in a revealing
symmetric vortex equation

&w]'—VX(Uij]‘):O

in terms of a pair of generalized vorticities

G=12 ()
w1=B, w2=B+V><V,
the effective flows

Ui=V-VxB, U=V,
and energy density of each fluid

p1=¢—pe, w2=V?/24+¢+p;,



where p. (or p;) is pressure of electron (or ion) and
¢ is electro static potential. The simplest and per-
haps the most fundamental equilibrium solution to
(5) is given by the “Beltrami-Bernoulli condition”.
Assuming that a and b are constants, the Beltrami
condition reads as a system of simultaneous linear
equations in B and V

B=a(V -V x B), (6)
B+VxV=bV. (7)

Combining (6) and (7) yields a second order partial
differential equation

Vx(VxB)-(b—a)VxB+(1-ab)B =0,
(8)

where @ = 1/a. Denoting the curl derivative Vx by
“curl”, (8) is written as

(curl = A\;)(curl —A_)B =0, (9)
where
)\i:%[(b—a)ﬂ: (b+a)2—4]. (10)

Since the operators (curl — A1) commute, the general
solution to the double curl Beltrami equation (9) is
given by the linear combination of the two Beltrami
fields. Let G+ be the Beltrami field such that

(curl = A£)G+ =0 (in Q),

n-Gy=0 (on 09),

where Q (C R?) is a bounded domain with a smooth
boundary 02 and m is the unit normal vector onto
0. Then, for arbitrary constants Cy, the sum

B=C,GL+C_G_, (11)
solves (9). The corresponding flow is given by
V=M+a)C;Gr+(A_+a)C_G_. (12)

This equilibrium is called by double Beltrami field.
The Bernoulli condition ¢; = const gives

B+ V? = const, (13)

where 8 is a conventional beta ratio that is given
by S = 2(pe + p;) in the normalized unit. This re-
lation shows that the double Beltrami equilibrium
is no longer zero-beta (force-free), but it can confine

an appreciable pressure when an appreciable flow (in
the Alfvén unit) is driven. To obtain such a fast
flow in plasmas, a nonneutral condition is proposed,
which can actually produce a self-electric field F in
plasmas, causing strong E x B shear flow if we apply
an appropriate magnetic field B there. For this pur-
pose, a new method of toroidal non-neutral plasma,
trap has been developed using a proto-type device
“Proto-RT” [4].

When a strong flow exists in addition to the cur-
rent in a two-component plasma, the system must
conserve two distinct helicities and the self-organized
state becomes qualitatively different from the Taylor
relaxed state [3,5]. The double Beltrami field may
be classified as higher energy level than the single
Beltrami field (see Fig. 1).
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FIG. 1. Hierarchy of relaxed states. The absolute min-
imum energy state is the vacuum. Suppose that we ap-
ply a static magnetic field (harmonic field) and produce
a plasma. Without applying any drive, the plasma will
disappear and the system will relax into the harmonic
magnetic field. If we drive the plasma current to sustain
the total helicity, the plasma relaxes into the Taylor s-
tate and achieves the Beltrami field. We may also drive
a flow (or inject charge). Then the relaxed state will be
the double Beltrami field.
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III. HIGH-BETA TOROIDAL EQUILIBRIUM

Due to the simple mathematical structure of the
double Beltrami fields, it is rather easy to find ana-
lytical solutions of various equilibria in slab or cylin-
drical geometry. By choosing an appropriate set of
parameters, we can construct very high beta solu-
tions with producing a large flow velocity V.

In this section, we present a coupled Grad-
Shafranov equation of the double Beltrami equilib-
rium. We consider axisymmetric two-dimensional e-
quilibria. Following the basic idea of formulating the
Grad-Shafranov equation, we use the Clebsch repre-
sentations of divergence-free axisymmetric (9 = 0)
vector function in cylindrical (r,6,z) coordinates.
We write B and V in a contravariant-covariant com-
bination form

B =V9(r,z) x V8 +rBy(r,z) V0, (14)

V =V®(r,z) x VO + rVy(r,z) V6, (15)

where ¥ (or ®) is the flux function (or the stream

function) of 7 and z, and By (or Vj) is the azimuthal
magnetic (or velocity) field depending on r and z.

Using these expressions in the double Beltrami

condition (6) and (7), and comparing each compo-
nent, we get a coupled Grad-Shafranov equation;

(Y _(1-@ a-b\ (¥
/) "\ b—a 1-0 P
aCi + Cs

_(Cl+b02), (16)

where C; and Cs are constants, and £ is the familiar
Grad-Shafranov operator,

0 (10 0?
Solutions of high-beta toroidal equilibrium are

obtained by iterating numerical analysis of (16).

We obtain a solution by finding functions ¥{"™"

and <I>(()"+1) that satisfy the following equation with
Ut = o and oY = o:

c gD\ 1-a2 a-b ()
S et ) T\ b—a 1-—b? o(n)
_ (@G +C ([ wrtY
C1 +bC> <I>£,"+1) '
(18)

We note that the “vacuum fields” satisfying

—L¥, =0, (19)
—£®, =0, (20)

can be included both in ¥ and ® as inhomoge-
neous terms. Choosing appropriate vacuum fields,
we can control the radial position and the shape of
the toroidal equilibrium.

We set the following boundary conditions to ob-
tain free-boundary equilibria. A conductive vessel is
not considered, so that ¥ and ® go to constants at in-
finity. These constants are chosen so that ¥ = 0 and
® = 0 at the plasma boundary, which are defined by
the contour of ¥ and & that touch the limiter, viz,

max
(7,z) Elimiter

U(r,z) =0, (21)

(r,z%ﬁﬁiter ®(r,z) =0. (22)
First we compare a numerical solution to (16) in
large aspect ratio with an analytical solution in cylin-
drical geometry for the confirmation of the correct-
ness of our code. When the toroidal plasma current
and the total toroidal plasma vorticity are geiven as
I; and §;, we can obtain an analytical solution in
cylindrical geometry as follows,

¥ =R [%{1 — Jo(Ayr)}

+%{1 — JO(/\_r)}] , (23)

N

®=R {(& +Ay) %{1 = Jo(A47)}
+
+(@+ ) C—:{l - Jo(A_r)}] , o (29)

and

@+ AL
27’!’7"0 ()\+ - )\_) Jl ()\+T0) ’
—+ @+ A L

O = 2rro O\ = A) I Ohro)’ (26)

cy

(25)

where where Jy and J; are the ordinary Bessel func-
tions, and R and r correspond to major- and minor
rudius.

We compare ¥ and & given by (16) with ¥ and &
in Fig. 2, where we set the aspect ratio is 100.
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FIG. 2. Comparison between numerical and analytical
solution.

In this figure, the numerical solution ¥ (or ®) is
expressed by a point x (or +), and analytical solu-
tion ¥ (or ®) is drawn by a solid (or dashed) line. We
can ascertain that the numerical and the analytical
solutions coincide well.

In this equilibrium, since fast flow is induced, we
need to care about shock formation. Therefore, us-
ing an MHD shock condition called by evolutionary
condition, we will discuss a shock formation for the
double Beltrami equilibrium in toroidal system. The
evolutionary condition indicates that, if the plasma
flow velocity V' = |V is larger than the slow wave
(V5) and smaller than the Alfén wave (Va,), the s-
low shock may be created, and if Vy < V, the fast
shock may appear [6]. Here the phase velocities of
each wave are defined by

B2
Viae =Vacosh = £ (27)
Plo

vy ={/2)[Vi+C?

1/2
+W%+@f4ﬁﬁ4}, (28)

Ve ={(1/2)[Vi +C?

1/2

R o] | MY

where V4 is the Alfvén velocity, Cs is the sound ve-
locity and @ is the angle between the background
flow (i.e., z-direction) and magnetic field. The Vg,
is the Alfvén velocity parallel component to the plas-
ma flow.

Finally, we discuss an equilibrium with plasma
flow in small aspect ratio toroidal geometry. Setting
the aspect ratio is 3, we solve the basic equations
(16). The results are shown in Fig. 3 - Fig. 4. We
plot the contour of ¥ and ® in Fig. 3, 8 profile in
Fig. 4 (a) and the plasma flow |V| and local V, Vi,
and V; at each point in Fig. 4 (b).

FIG. 3. The contours of ¥ and @ in toroidal equilibri-
um of high-beta double Beltrami field.
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FIG. 4. (a) The beta profile, (b) Plasma flow and
the regions of shock formation in toroidal equilibrium
of high-beta double Beltrami field.



Now, we have two problems to be solved.

(1) There is a jump of beta (pressure) at the
boundary of plasma.

(ii) There is a possibility that a slow shock is cre-
ated in the plasma.

We may solve (ii) easily by setting the Beltrami pa-
rameters a and b as proper values. Here, we showed
the result only in the case of @ = b. Using the ana-
lytical solutions (23) and (24), the result in the case
of a # b is plotted in Fig. 5 and Fig. 6, where we set
a=-1,b=0.5and a = —1, b = 1. In both figures,
the beta profile are plotted in (a), the flow profile in
(b). From these results, we can say that a high-beta
equilibrium can exist avoiding a shock or minimizing
this effect by setting proper Beltrami parameters.

—_

FIG. 5. Plasma flow and the regions of shock forma-
tion in cylindrical equilibrium of high-beta double Bel-
trami field when @ = —1, b = 0.5.
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FIG. 6. Plasma flow and the regions of shock forma-
tion in cylindrical equilibrium of high-beta double Bel-
trami field when @ = -1, b = 1.
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