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Abstract 
 
 Two-fluid flowing equilibria are explored, focusing on “stationary-energy” states 
with uniform density. Attention is limited to on compact toroids and to the region inside 
the separatrix. The equilibria are fall into two classes, coupled and decoupled, referring to 
the linkage between the magnetic field and the flows. The coupled class is force-free and 
may or may not have large flows. Spheromaks are in this class. The decoupled class has 
Alfvenic poloidal flows and generally have high β. FRCs are in this class. Both classes 
occupy particular “allowed” domains in “helicity space,” a 2D map with the electron and 
ion helicities as coordinates. The allowed domains for the two classes overlap. 
Throughout the domain allowed to decoupled equilibria, they are energetically preferred. 
Coupled equilibria are only expected in the domain forbidden to the decoupled class. This 
bifurcation may explain the FRC-spheromak bifurcation observed in experiments. 
Analytic equilibria are found that apply to both classes.  
 
 

I. Introduction to the two-fluid model 
 
The possibility of natural plasma states with finite pressure has re-emerged in 

studies of the two-fluid model,1,2,3 which is more general than the MHD formulation. A 
key feature of these states is significant flow. As such they constitute a new class of 
plasma, contrasting with standard MHD models of fusion plasmas in which the flow 
energy is negligible compared with the magnetic energy. We present the first detailed 
analysis of 2D stationary-energy states of a flowing two-fluid. To facilitate the analysis, 
three simplifications are made: (1) stationary-energy state (which is a sufficient condition 
for stability); (2) uniform density; and (3) angular momentum conservation is ignored.  
 

A two-fluid has a natural length scale,2,3 the ion skin depth il  = 2122 )4( necmi π  
in contrast to MHD which has no natural scale. Flows and fields for each fluid species are 
connected by the canonical momentum Pα = mαuα+ qαA/c (α = i,e). A two-fluid has ideal 
magnetofluid invariant, the generalized helicities, ∫ ×⋅= αααα τπ PP ∇∇∇∇dqcK )8( 22 one for 

each species (α = i,e). The global angular momentum, ∫= θτ ii runmdL  is also invariant 
in axisymmetric systems with suitable boundary conditions. Relaxation theory postulates 
that weakly dissipative systems approach the state of maximum entropy of the ideal 
(nondissipative) system subject to its constraints. These are equivalent to the minimum 
energy states subject to the same constraints. The energy minimized is the organized 
energy, called the magnetofluid energy, ( )∫ += πτ 82 22 BnumdW iiMF  .  The Euler 

equations for the stationary energy state2 are ααα πλ Pu ××××∇∇∇∇θθθθ )4(ˆ 22 necr +Ω=  where the 



 

 

parameters λe, λi, and Ω are the Lagrange multipliers associated with the two helicity and 
the angular momentum constraints, respectively. Familiar reduced cases are limits of the 
two-fluid model. A simple fluid has a single helicity invariant, the fluid helicity, found by 
setting the e = 0 in Ki; its stationary-energy states are Beltrami states. An MHD fluid has 
a single helicity invariant, the magnetic helicity found by setting me = 0 in Ke; its 
stationary states are Taylor states. Double-Beltrami states3 are stationary states of a two 
fluid where angular momentum conservation is ignored. 
 
 

II. Analysis of two-fluid equilibria 
 
Assume a stationary-energy state with constant density, and ignore angular 

momentum conservation. Then the equilibrium equations are4 
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where ∆* is the Grad-Shafranov operator, and ψ,ψi are the stream functions for the 
poloidal field and flow. Auxiliary equations govern the toroidal components. For uniform 
density the pressure is given by Bernoulli’s equation constunmp ii =+ 22 .  The two 
parameters λe,λi are Lagrange multipliers associated with the helicities constraints. Both 
stream functions obey a modified Helmholtz equation, 0},){( 2* =Λ+∆ iψψ  with 
eigenvalue Λ. Note that the boundary geometry requires that the eigenvalue be one 
member of a discrete set (infinite) of real numbers. Nontrivial solutions exist only if the 
determinant of the coefficient matrix vanishes 
     || )( 2Λ−D
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Two classes of equilibria appear: if the off-axis elements of  )( 2Λ−D
t

 are nonzero the 
flows and fields are coupled; if the off-axis elements are zero the fields and flows are 
decoupled. The fields and flows for these two classes are as follows 
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The parameters λe,λi,α are connected by the characteristic equation: 
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λ ;           α  =  1;                   λe  =  free    (6a) 

    Decoupled:  2122 ]1)[1( iie ll Λ+=λ ;   2122 ]1)[1( −Λ+−= iii llλ ;   α  =  free    (6b) 
 
The properties of the two classes of equilibria are as follows. (1) Coupled class. 

(a) The current density is aligned with the magnetic field, i.e. these states are force-free. 
(b) Pressure nonuniformities arise only from inertial effects. (c) The flow is also aligned 
with the magnetic field. (d) The flow velocity may range from zero to Alfvenic. (2) 
Decoupled class. (a) The current is not aligned with the magnetic field so that the field is 
diamagnetic, and high β is allowed. (b) Only the poloidal parts of the flow and field are 
aligned. (c) The poloidal flow speed is Alfvenic.  
 



 

 

III. Global integrals of flowing equilibria 
 
 Given the foregoing solutions the global integrals can be found. The objective is 
to eliminate the free parameter (λe or α) in favor of the helicities in order to find the 
express the organized energy in the functional form WMF = WMF(Ke,Ki,Λ). The two 
helicities can be thought of as the coordinates in a two-dimensional map of helicity space; 
on this map the domains of the equilibrium types and their properties can be classified. 
The function WMF(…) is different for the two classes of equilibria. In the coupled class 
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Note that Ki and Ke must have the same sign; the case of opposite signs is forbidden to 
coupled equilibria. Only the positive square root is shown here; the negative square root 
case is also a solution but it has much higher energy; the case shown is energetically 
favorable. The first and second terms in the square brackets represent the magnetic and 
flow energies, respectively. At a critical value |Λ| = ieiC KK l)1( −≡Λ  the two 
energies are equal, i.e. energy equipartition. For |Λ| > ΛC the magnetic energy is larger 
and for |Λ| < ΛC the flow energy is larger. The flow velocity is 
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where nmBV iA π4=  is the local Alfven speed. In the decoupled class 
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There is an approximate equipartition between flow and field energy throughout most of 
the allowed region. In the decoupled class only the poloidal parts of the flow and field 
vectors are aligned: 
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Here “p” = poloidal, and VAp = Bp/(4πmin)1/2 is the “poloidal” Alfven speed. 
 

From the analysis of the global integrals, note the following properties.  (1) 
Coupled equilibria. (a) Both helicities must have the same sign. Thus the allowed 
combinations of Ke-Ki are the I and III quadrants of Ki vs Ke space. (b) The flow is 
parallel (antiparallel) to the field if the helicities are positive (negative). The flow is 
quite large (compared to the Alfven speed) unless the two helicities are nearly equal. (c) 
Equipartition between magnetic and flow energies occurs at a critical value ΛC that 
depends on Ki/Ke. (2) Decoupled equilibria. (a) The current density and magnetic field 
vectors are not aligned; thus these equilibria are not force free. FRCs are an example of 
decoupled equilibria. (b) The forbidden region in Ki vs Ke space is a narrow “wedge” 
around the Ki = Ke line. The helicities need not have the same sign. Moreover, the 
electron helicity may vanish without forcing the uninteresting case of no magnetic fields; 
indeed, FRCs have Ke = 0. (c) Only the poloidal parts of the ion flow and magnetic field 



 

 

are aligned. (d) An approximate equipartition between magnetic and flow energies occurs 
in most of Ki vs Ke space.  
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 Equilibrium types can be portrayed on a helicity map, a two-dimensional space 
with the two helicities as coordinates as shown in Fig. 1. Mainly only the first and fourth 
quadrants are shown since the second and third (Ke < 0) are identical, although inverted. 
The domains are bounded by rays from the origin, i.e. lines of constant Ki/Ke. Coupled 
equilibria are forbidden in the shaded domain. Two familiar reduced cases lie in the 
allowed: MHD states (Taylor states) are on the Ki = Ke line, and simple fluids (Beltrami 
states) are on the Ki axis. Decoupled equilibria are forbidden only in the narrow wedge 
centered on the Ki = Ke line (hatched region in Fig. 1). Clearly the allowed domain for the 
decoupled class is much broader than that for the coupled class. FRCs lie on the Ki axis, 
the same line occupied by Beltrami states; of course, FRCs are in the decoupled class 
while Beltrami states are in the coupled class. 
 
The allowed domains for coupled and decoupled classes overlap on the helicity map 
(regions neither shaded or hatched in Fig. 1). In the overlap regions either class is 
allowed. Relaxation processes are likely to select the class with lower energy. Comparing 
Eqs. (7,9) it is easily shown that throughout its allowed region, the decoupled class has 
lower WMF. The coupled equilibrium then are expected only in the region marked 
“forbidden decoupled” in Fig. 1. This represents a bifurcation between the two classes of 
equilibria. Since one class has high-β and the other is force-free, this may explain the 
FRC-spheromak bifurcation observed in the TS-3 experiments.5 

 



 

 

IV. Analytic equilibrium structure 
 

Given the boundary geometry, the eigenvalue Λ must be one of a set of discrete 
values, each representing a separate equilibrium. It is useful, however, to treat Λ as a free 
parameter and allow the separatrix boundary to adjust accordingly. This allows simple 
analytic solutions for the stream function structure ψ(r,z), ψi(r,z). A simple solution is 
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where B0 ≡ |B|(r=0,z=0) where Λ⊥ , Λ|| are determined by 
             22
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A closed separatrix requires π/2 ≤ Λ||b ≤ π. The parameter Λ⊥  ≈ 3.8/a where 3.8 is near 
first zero of the J1 Bessel function. Superficially the equilibrium structures resemble 
static MHD equilibria but there are important differences that will be explored elsewhere.  
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