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I Magnetic helicity is never the global time invariance ! and a generalized
self-organizationtheory

[I.1  Theoretical Thought Analysis 0-D=p, (3)
Axiom setof physicallaws of Maxwell's equations 0-B=0. 4)
%_I? — _OxE, 0 Poynting’s enegy conserationlaw for thefield enegy W,
oW 1
o _f:_/'.Edv__?{E B)-dS, (5
5r = —i+OxH, ) ot ] ™ (ExB)-dS,  (5)



where

Thetwo physicallaws of Egs.(1)and(4) arerewritten

oA

T

)
(8)
Definition of the magnetichelicity K [J. B. Taylor: Phys.
Rev. Lett. 33(1974)1139.]:

KEi A-Bav.
Hy Jv

B =0OxA,.

©)

Here, we emphasizehat even if we include “the external
helicity”, takingaccounof thegaugenvariancethefollow-
ing argumentis still essentiallycorrectandapplicable“The
time changerateof K ", Partial derivative of the definition
Eq.(9)with respectot, andusingonly two laws of Egs. (1)
and(4) , thevectorformulae, andGausgheorem,the time
changeateof K ”,

oK 1 [ A 0B
- phla BrAE Y
- _2 B.EdV
Ho Jv
+ 1 f(ExA — ¢B)-dS.  (10)
Uy Js

It shouldbeemphasizetierethat“the time changeateof K,
Eq.(10)"is derivedfrom merelyonephysicallaw of Eq.(1),
which cannever leadto arny deterministictime evolutions
of A and B without anotherphysicallaw of Eq.(2). The
valueof K /dt is passiely andresultantlydeterminecdby
themutuallyindependentolumeandsurfaceintegral terms
in Eq.(10). Equation(10) is not “the conseration equation
of the helicity K itself”, but is merelyan equationfor “the
time changerateof K”.

Assuming(E-D)/2 <« (H-B)/2 in the plasmacon-
finementexperiments and using the simplified Ohm’s law
of Eq.(11),“the enegy consenrationlaw” andthe so-called
“helicity conserationlaw” arederivedrespectiely as

Ohmislaw: E 4+ vxB =nj. (12)
% ~ Wm
ot - ot
= — [{nii+GxB) vy
—i?{(ExB)-ds. (12)
Uy Js
oK 2
P _< [piBav
o “O/Vm
+if(ExA—qoB)-ds. (13)
Hy Js

The misunderstandingn the so-called"helicity consera-
tion law” has been establishedrom the following argu-
ment,using“the time changerateequationof K written by
Eq.(13)".

a) At first, we consider‘the idealcase"wherethewhole
region of plasmasnsidethe boundaryis filled with theide-
ally conductingplasmaandthe boundarysurfaceis the ide-
ally conductingwall, i.e.,n =0andE =0andB-dS=0
attheideally conductingwall. We thengetfrom Eq.(13)in
this “ideal case"that “the time changerate of K” becomes
asdK/dt = 0.

b) Fromthis result,we may concludefollowings. Since
thevalueof K is constantalongthetime variablet, thetotal
helicity K is consered and thereforeit mustbe “the time
invariantin the dynamicalsystemin the caseof ideal plas-

mas".

However, the part of (a) declaresonly that the value of
K definedby Eq.(8)doesnot changealongthetime variable
t in “the specialor thetrivial case”of n = 0 plasmadilling
fully within theideally conductingwall.

** A simple thought experiment** a) Considerthat
thereexists somevacuumfield region, i.e., n = o, nearthe
ideally conductingwall, and the otherregion is still filled
with theideally conductingplasma.

b) We thenhave to comebackto Eq.(10),andwe canput
E = 0in the plasmabut have to leave E in the vacuumfield
region.

¢) In this simple case,the value of dK/dt is passiely
andresultantlydeterminedy thevolumeintegral of B-E in
Eq.(10)alongthetime variablet.

d) Thedecrementf K in thissimplecasds by nomeans
“the resistivelossof K”, becausef nocurrentin thevacuum
field region.

e) On the other hand, we definitely know that the
changedpart of W, transfersto the other type of enepy,
suchasthekineticenengy, insidetheideally conductingwall
by Eq.(12).

f) However, thetotal helicity K cannever be consered
in thedynamicalsystemin this simplecase.Thisis because
thatEq.(10)is merelyanequationfor “the time changerate
of K”, andthe helicity K is not the physical quantity but
merelyrepresentshe topologicalpropertyof the magnetic
field linesateachinstant.

g) Thesimplethoughtexperimenshavn aboremaylead
usto aconclusiorthatthetotal valueof K is never“the time
invariantin thedynamicalsystem”.

The value of the helicity K hasnever beenconsered
in the computersimulationsby R. HoriuchiandT. Sato[R.
HoriuchiandT. Sato: Phys.Rev. Lett. 55(1985)211]and
alsoin all experimentson thereversedfield pinch (RFP)by
mary authors,on the toroidal Z-pinch by Dr. K. Sugisaki
at ETL [K. Sugisaki:Jpn. J. Appl. 24 (1985)328] andon
merging two spheromacnto onefield reversedconfigura-
tion (FRC)or onespheromady Y. Ono,Katsuraiet. al. [Y.
Ono, M. Yamada,T. Akao, T. Tajima, and R. Matsumoto:



Phys. Rev. Lett. 761 (1996)3328]. Especially in the
caseof the toroidal Z-pinch experiments the total helicity
K increasedo finite valuesfrom zeroinitial valuewithin a
few tensof us[K. Sugisaki:Jpn. J. Appl. 24 (1985)328].
“Theseexperimentafesultshave beendemonstratethatthe
conjectureof thetotal helicity invarianceby Dr. J. B. Taylor
is notphysicallyavailableto realmagnetizeghlasmas.Even
if they believe the so-calledhelicity injectionasatechnical
method the helicity injectionis physicallythe magneticen-
ergy injectionin realexperimentsIf W, /0t = Oisrealized
by the so-calledhelicity injectionwithout enepgy injections,
thenthe process'violates the moreimportantphysicallaw
of theenegy conseration!”

As is known mathematically‘as aaxiom,thestartingby
thevariationalprinciple with the useof variationalformula-
tion” = “that by therelatedor resultantdynamicequations
asanaxiomset”. “The enegy principle” is within this phys-
ical thought,i.e.,it haveto leadto therelateddynamicequa-
tions.

Physicallyand mathemathicallymportantpoint is that
the axiomsetof relateddynamicequationgive usall kinds
of time evolutions of the dynamicsystemitself, including
notonly self-omganizedstatesof equilibriabut alsotherelax-
ationprocessethemselesandall otherchangingprocesses

The relaxationtheoryby Dr. J. B. Taylor hasbeennei-
therthe variationalprinciple nor the enegy principle. Tay-
lor's theoryis merely“the variationalcalculuswith global
constraintwith respectto the value of K” to find the min-
imum enegy solutionfrom the setof solutionshaving the
samevalueof K.

Without usingthe conceptof the helicity K, we cande-
rive the relaxed stateof MHD plasmasas O x (nO x B)
= AB includingd x B = A;B for aspecialcaseof spatially
uniformn [Y. Kondoh:J.Phys.Soc.Jpn.58(1989)489.Y.
Kondoh:Phys.Rev. E 49(1994)5546.Y. KondohandJ. W.
VanDam: Phys.Rev. E 52, 1721(1995).]. Relaxationsthe
magneticfield generationand the transformatiorbetween
the toroidal- andthe poloidal magneticfields aredueto the
dynamotermof (j x B) - v in theenegy conserationlaw of
Eq.(12),wherethevelocity v comesfrom the Lorentzforce
and/orthethermalcornvectionof the conductingfluids.

II.2 A GeneralizedSelf-Organization Theory

[Y. Kondoh:Phys.Rev. E 48(1993)2975.]

It shouldbe emphasizedherethat the generalizedself-
organizationtheory with the use of auto-correlationgor
physical quantitiesis not fundamentallybasedon both of
the variational principle and the enegy principle, and the
auto-correlationgarenever thetime invariants.

Quantitieswith n elementsn generaldynamicsystems
of interestshallbe expressedasq(t,x) = {qg,(t,x), g,(t,x),
-+, On(t,X)}. Here t istime, x denotesn-dimensionaspace
variablesandq representasetof physicalquantitieshaving
n elementsDissipatie nonlineardynamicsystemgenerally

describedy

oa

d_(i[ll = Gi [q] ’
whereG;[q] denotedinear or nonlineardynamicoperators,
which mayincludenon-dissipatie and/ordissipatve terms.
In somecasesthe operatorG;[q] may includenegative dis-
sipation terms such as enegy input terms ¢ (t,x) [ i
1,2,3,...]. After takingtheproductof g, (t,x) andbothsides
of Eq.(14), and integrating the resultantequationover the
volumeV, “the conserationlaws” for the for the dynamic
systemwith ¢ (t,x) arederived,as

(14)

[ (5 5latxae0] v

= [ {atxc[}av. (15)
After defining the axiom set of dynamic equationsof
Eq.(14),the solving the time evolution of the dynamicsys-
tem with given boundaryconditions belongsto the pure
mathematicaproblemsas well asthe physicalones. All

time evolutions of the dynamic systemmay go on deter
ministically by the all Egs.(14)[i = 1,2,3,... ] thathave
completiveinteractionawith all otherquantities.If wetrace

" all overtime evolution of thedynamicsystemwe mayfined

that at somephase,one or somedynamic operatorswork
dominantlyandothersarenegligible. Furthermorewe may
noticethat the dominantoperatorsalwaysinterchangewith
eachotherasthetime goeson. On theway of thetime evo-
lution of the dynamicsystem,we may alsofind the spatial
profile of somequantity g;(t,x) [i = 1,2,3,...] becomes
unchangeabler a steadystate for which we would call the
state" theself-omganizedstate”.

We shouldnotice here,however, that thereare no rea-
sonsto believe the self-omanizedstatesfor all quantities
g(t,x) [i = 1,2,3,...] to appeamtthesameinstant.Onthe
contrary it is morenaturalto expectthatthe self-organized
spatialprofile would have someshift with eachotheramong
the quantities. This is becausethat if the self-omganized
steadyprofilesof all quantitiesg;(t,x) [ = 1,2,3,...] take
placeat the sameinstant,thenthe dynamicsystemdoesnot
evolve in time afterthat, i.e., this situationcontradictdog-
ically to the startingassumptiorthatthe systemevolveshby
theaxiomsetof thedynamicequationd

All of the quantitiesin the dynamicsystemgo through
their “own shortrest” on their way, andthe dynamicsystem
will show variousfacesduring all over the time evolution.
Fromthis standpoiniof obsenationon over all time evolu-
tion of the dynamicsystem,we canidentify or define“the
self-omganizedstate” for eachquantity as “the self-similar
statein the phasewith the mostunchangeablstructure”.

In orderto describequantitatvely thosemostunchange-
ablestructurefor eachquantity we inevitably introducethe
auto-correlationss a suitablemeasure. The definition of
“the self-olganizedstate”may be mathematicallyexpressed
by usingauto-correlationsg; (t, x)g; (t + At, x), betweerthe
time, t, andslightly transferredime,t + At, with asmallAt,



i. e.,"t self-olganheizedtate”is definedasfollows

Jai(t,x)g;(t + At,x)dv
J 6t x)q;(t, x)av
Taylor expansiong; (t + At,X) = g (t,x) + [dq;(t,x)/It]At +
(1/2)[9%q;(t,x)/0t?](At)? + --- andthe 1stordr of At give
usthe definition of the self-omganizedstateduring the order

of thetime scaleAt as

Jatx)[9q(t,x)/ot ]dv
f qi (t7x)qi (t7 X)d\/
SubstitutinghedynamicequationfEq.(14),into Eq.(17),we

obtainthe equivalentdefinition for the self-olganizedstate,
as

min | — 1] state (16)

min |

| state. a7)

J 4 (t,X)G;[g]av
fqi (t7x)qi (t,X)d\/

Eq.(17) shaws that realizationof the self-similar coherent
structuresj. e., “the self-oganheizedstate”,in dynamical
systemsds the phaseof “the minimum changerate of auto-
correlationdor theirinstantaneousalues”.

Sincewe have substitutedthe original dynamic equa-
tionsinto the definition of the self-omganizedstate,“whole
propertief thedynamicsystemis essentiallyembeddedn
the procesdo derive the self-olganizedstatefrom Eq.(18)".
The mathematicalexpressionswith the use of the varia-
tional calculusfor Eq.(17)and Eq.(18) are written as fol-
lows, defininga functionalF with useof a Lagrangemulti-

01

plier A;, as

| 5l ata )]
+ A4 (t,x)q; (t,x) } dv
/L atxGa

min | | state. (18)

_n
|

+ A0, (t,x)q;(t,x) }av . (19)
OF =0, (20)
3%°F > 0, (21)

wheredF andd2F arerespectiely thefirst andthe second
variationsof F “with respecto thevariationdq(x) only for
thespatialvariablex”.

ComparingEgs.(15)and(19), we canfind thatthe con-
senationequationdor the dynamicsystemarenaturallyin-
cludedin the presentformulation of the generalizedself-
organizationtheory We shouldremindherethatthe global
auto-correlationf ¢ (t,x)g;(t,x)dV is never thetime invari-
antbut strictly the global constraint.

Theimplicit assumptionn thistheoryis thatthedynam-
ical systemevolvesall possibleareain statephases.

1.3 Application to Plasmas

We apply here the generalizedself-organization theory
shavn above to fusion plasmas. Accordingto the general

type of the dynamicequationsEq.(14),we rewrite Eqs.(1)
and(2) asfollows

JB
E__DXE' (22)
eoaa—ltzszH—j. (23)

Following threemore physicallaws, i.e., the consera-
tion laws of themassEq.(24),themomentumEq.(25),and
thegeneralizedhm’slaw, Eq.(26).

Opm
7_—D'(pmv). (24)
ov i
Pmg = —Pm(V-OV + [pE +jxB
-0(P+P)]. (25)
d] B e2ne i 1 .
5 = {E+V><B—’7eil_ae(JXB)
+enie [ OP.— (me/m)Z0R ] }. (26)

Thesethree equationscome from the Boltzmann kinetic
equationdor electronsandions.

We startwith the axiom setof seven physicallaws of
Eqgs.(1),(2),(3)(4), (24), (25) and (26). Poynting’s enegy
conserationlaw concerningwith thefield enegy W, is

oW,
ot

/j-Ed\/— !
\Y IJO

Theconserationlaw of thekineticenegy W, = [, (pm/2)v-
vdvis

]i(Ex B)-dS.  (27)

%Wk = /v{_ %V‘VD'(PmV)
= PmV-[(v-0)V]
+[PeE-v+ (jxB)-v

—pomv-O(R+ R} V. (28)

A conseration law on the current by defining W =
Jv (1/2)j -j oV is obtainedas

0 N,
G = /V

Me

o1
el d + g 1+ [OFe
—(me/m)ZOR ]} av.

Accordingto Eq.(19),we obtainthe functionalfor thefield
enegy F;, for thekinetic enegy F,, andfor the currentF,
respectiely, as

Fo= [ {=1E+ A

B-B 1
) Jav —H—O?{S(EXB)-dS, (30)

{j-E—-(xB)-v

(29)

gE-E

+ —
21,



Fe = /V{—%V‘VD'(PmV)
= PmV-[(v-T)V]+ [peE-v
+(jXB)'V—pmV'|:|(Pe+Pi)]
+A\,p?mv-v}d\/,
[ S0 e~ xB)vn ]
e .
+n—bl'[|jpe—(me/”¥)ZiDPi]
+Acjjrav. (32)

In general,we take variationswith respecto dE, dB, dv,
0j, 0pm, OPe, OPe, 8P, dne, On;, anddn,,;. Fromthe Euler
Lagrangesquationdor the solutionsof Eq.(20),we will get
new variousequilibriumconfiguration®f theself-organized
stateswith the plasméflow, the sheafflow, the spacechage,
the spacepotential, the deviation betweenthe ion andthe
electrondensity profiles, the resistvity profile, and so on,
dependingntheboundaryconditionsandtheexternalinput
sourcesuchasthevariousenegy injectionsandtheparticle
beams.The resultantequilibrium configurationsarefar be-
yondthe corventionalMHD equilibriumonesby the Grad-
Shafrane equationbasedn theequationofj x B = [p.

In orderto realizethe steadystate of the confinement
systemof plasmasye canextendcorventionalmethodsof
plasmacurrentdrives,by usingthe threeconseration laws
of Egs.(27),(28and(29),i.e.,usingenepgy injectionsof var-
ious typesof enegies, suchas magneticenepies, electro-
magneticwave enegies, internal enegiesof plasmoidsby
plasmaguns,which inducethe thermalplasmaflow veloc-
ity, variousparticlebeamenegies,andsoon.

(31

Fe

In Sectionl, we have shovn our experimentaland numeri-
dalworksonthe compactoroidalplasmagCTP)in Gunma

Concluding Remarks

Univ., whichwasinvestigateciround1983. The experimen-
tal work had attemptedio producethe CTP andto maimge
two CTR suchasthe extreamly low aspectratio RFP the
high B spheromackthe SphericalTokamak(ST), the FRC
and/orthe FRC with week toroidal magneticfields, all of
which have no axial centerconductemwith the useof the ax-
isal dischage throughthe long gap betweenthe two cylin-
drical electrodes.We have also proposedhe Mutli-link ed
FRCsystenwith weektoroidalfieldsin orderto realizehigh
B CTP with long confinementimes of the enegy andthe
configurationsln Sectionll-I, we have demonstratedhath-
ematicallythat the magnetichelicity K is never the global
time invariant We have shovn that the so-called“helicity
conserationlaw” is not the conserationlaw, but is merely
anequatiorof “the time changerateof K whichis passvely
and resultantly determinedby the muturally independent
volumeandsurfaceintegraltermsin Eq.(10)and/orEg.(13).
We have clarifiedthattherelaxationtheoryby Dr. J.B. Tay-
lor hasbeenneitherthe variationalprinciple nor the enegy
principle,andhave discussedhatthe so-calledTaylor state
0 x B = A;B with spatially constantA; andinitial K has
neverbeernrealizedn experimentaplasmasndin computer
simulations.In Sectionll-1, we have presented formulation
of theadvancedyeneralizedelf-organizatiortheorythatcan
be applicableary dynamicalsystemsandincludesnaturally
bothof the dynamicalpropertiesandthe conserationequa-
tions of the system. We have also shovn the application
of the theoryto the fusion plasmawith the useof the ax-
iom setof seven physicallaws, and have pointedthat the
EulerLagrangeequationdor every variationsof the quan-
tities leadto their own equilibirium configurationscertain
time deviation amongthe quantities Jik e asthe experimen-
tal plasmas. The resultantequilibrium configurationsare
far beyond the corventionalMHD equilibrium onesby the
Grad-Shafrane equation. In orderto realizesteadystates,
we have proposedrarioustypesof enegy injections, basing
onthethreeconsenrationlaws of Eqs.(27),(28and(29).



