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I. Introduction 
 
  Low frequency waves have been used for plasma heating. Recently a heating 
experiment of a Field-Reversed Configuration (FRC) plasma has been performed by 
Yamanaka et al. [1]. In this experiment, low frequency (compared with the ion’s 
cyclotron frequency in the external magnetic field) oscillating magnetic field was 
applied to the FRC plasma. The applied field was homogeneous in the azimuthal 
direction. As a result, a fluctuation of the magnetic field propagating in the direction 
parallel to the equilibrium magnetic field of the FRC plasma was observed. In addition, 
increase of the plasma energy was observed. It was found from comparison of the total 
temperature and the ion temperature that the increase in the plasma energy was mostly 
due to the increase in the ion temperature. This implies that the applied magnetic field 
excited low frequency waves and the energy was absorbed by the ions. In this study 
eigenmodes of low frequency waves in a FRC plasma is analyzed to understand the 
heating mechanism using the single-fluid MHD model. 
 
 

II. Eigenmode analysis 
 
  To investigate the low frequency waves propagating through FRC plasmas, the 
single-fluid MHD equations are used: 
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Linearizing these equations and assuming that the FRC plasma has no flow in its 
equilibrium state ( 00 =v ), we have 
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where the subscripts ‘0’ and ‘1’ indicate the equilibrium and perturbed quantities, and 
the perturbed quantities are assumed to have following form in the cylindrical 
coordinate: 
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Equations (8) and (9) constitute an eigenvalue problem. We look for eigenvalues k  
and corresponding eigenfunctions )(~),(~),(~),(~),(~),(~

111111 rEirEirErvrvrvi zrzr θθ  for a given 
ω . The boundary conditions are as follows: 
 01 =v , 0,0 111 ==≠ zr EEE θ  at the wall ( wrr = ) 
 0,0 111 ==≠ θvvv rz , 0,0 111 ==≠ θEEE rz  at the geometric axis ( 0=r ) 
The problem is solved in the following way. We approximate the eigenfunctions in 
terms of a finite series of basis functions )(rnφ  and a function which satisfies the 
boundary conditions. For example, riv1  is expressed as follows: 
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where )(rFvr  is the function satisfying the boundary condition for riv1  and )(vr
nC  are 

the expansion coefficients. In deriving the equations for the expansion coefficients, we 
use the Galerkin method. Namely, substituting Eq. (11) and expressions for the other 

 
Fig. 1. Profiles of the FRC equilibrium mass 
density, current density, magnetic field, and 
temperature. The equilibrium has 6.0=K  and 

37.0=sr . 



variables into Eqs. (8) and (9), multiplying them by )(rlφ  for N,,1 Ll = , and 
integrating them over wrr ≤≤0 , we obtain a system of N6  equations for N6  
expansion coefficients. Here wr  is the wall radius. 
  One-dimensional FRC equilibrium model, which is homogeneous in θ  and 
z -direction, is used in this study. As the equilibrium magnetic field the rigid-rotor 
profile [2] is used: 
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where sr  and wB  are the separatrix radius and the magnetic field at the wall, and K  
is a parameter. The equilibrium pressure profile is calculated from the pressure balance: 
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where nullp  is the pressure at the field-null point. As the temperature the following 
profile is used: 
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where maxT  is the maximum temperature. Figure 1 shows the equilibrium profiles. 
 
 

III. Results 
 
  The eigenvalue problem was solved for the azimuthal mode number 0=m . The 
current applied in the experiment has the same mode number. Figure 2 shows the 
dispersion relation for the low frequency waves propagating through the FRC plasma in 
z -direction. The frequency is normalized to iwci meB≡0ω , which is the ion cyclotron 
frequency in the external magnetic field and the wave number is normalized to wr1 . 
The broken line corresponds to 80 kHz which is the frequency of the applied field in the 

 
Fig. 2. Dispersion relation of the low frequency 
waves.  



experiment [1]. The dotted line shows the Alfvén velocity based on wB  and nullρ  
which is the mass density at the field-null point. We see from Fig. 2 that the eigenmodes 
are dense for 0Aph vv ≥  and sparse for 0Aph vv ≤ . For the dense region, the density of 
eigenmodes increases with increase of 
the number of basis functions N . This 
shows that there is a continuous 
spectrum for 0Aph vv ≥ . 
  Figure 3, 4, and 5 show the radial 
structure of the perturbed electric field, 
mass flow, and magnetic field for the 
continuous spectrum along the broken 
line (80kHz). For the smaller 
wavenumbers krw  (larger phase 
velocities), the perturbed quantities have 
their amplitude only outside the 
separatrix as shown in Fig. 3(a). As 

krw  increases (the phase velocity 
decreases), the amplitudes move to the 
inner region (Figs. 3(b) and (c)). In 
other words, modes with larger phase 
velocity propagate in the outer region in 
r . In addition, the θ -component of the 
magnetic field is greater than the other 
components. This may explain the 
observed θ1B  in the experiment for 
which the phase velocity varies with r . 
For the wavenumbers 11.0≥krw , 
modes such as shown in Fig. 4(a) 
appear. For these modes the perturbed 
quantities have their amplitudes only in 

nullrr ≤ , where nullr  is the radial 
position of the field-null point. For 

(a) 052.0=krw , ( ) 290 =Avkω  

 
(b) 068.0=krw , ( ) 220 =Avkω  

 
(c) 13.0=krw , ( ) 120 =Avkω  

 
Fig. 3. The radial structure of the 
perturbed quantities of the eigenmodes 
for various eigenvalues krw . The red, 
green, and blue lines show the θ,r , and 
z -components, respectively. 

 
(a) 11.0=krw , ( ) 130 =Avkω         (b) 60.0=krw , ( ) 5.20 =Avkω  

   
Fig. 4. The radial structure of the perturbed quantities of the eigenmodes. 



larger wavenumbers modes such as shown in Fig. 4(b) appear. For these modes, the 
perturbed quantities have their amplitudes across the field-null point. When the 
wavenumber krw  exceeds about 2 the characteristics of eigenmodes change. The 
radial structure of the amplitude becomes more global as shown in Fig. 5. In addition, 
significant zE1  appears. From Eq. (9) we have 
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Thus these modes can be strongly affected by the equilibrium current density profile. In 
a high- β  FRC plasma ( 1~β ) the ion’s thermal speed 0~ ATi vv . The phase velocities 
of these modes are rather small compared with the ion’s thermal speed. The current 
profile of FRC plasmas in experiments may be different from the one used in this study 
[3]. Thus there is a possibility that these modes have a phase velocity nearly equal to the 
ion’s thermal velocity and strongly damped to heat the ions. Analyses for other FRC 
equilibria which reflect the experiments [4] are needed. 
 
 

IV. Summary 
 
  In this study the eigenmodes of low frequency waves in a FRC plasma was obtained 
for the first time. It was found from the dispersion relation that there is a continuous 
spectrum and discrete spectra. The modes corresponding to the continuous spectrum 
may explain observed θ1B  in the experiment. Analyses for the equilibria that reflect the 
experiments are issues in the future. 
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(a) 3.4=krw , ( ) 35.00 =Avkω         (b) 5.9=krw , ( ) 16.00 =Avkω  

   
Fig. 5. The radial structure of the perturbed quantities of the eigenmodes. 


